New Part No.: MT9M413C36ST

500-fps, 1.3-Megapixel CMOS Image Sensor

Featuring Micron's TrueSNAP™ Electronic Shutter

Features

- 1,280H x 1,024V image resolution
- TrueSNAP[™] freeze-frame electronic shutter
- 500 frames per second (fps)
- Monochrome or color digital output
- <500mW maximum power dissipation @ 500 fps
- On-chip, 10-bit analog-to-digital converters (ADCs)
- Simple digital interface

Description

Micron's MI-MV13 is the world record holder for the fastest CMOS image sensor. The sensor features Micron's revolutionary TrueSNAP freeze-frame electronic shutter. which enables simultaneous exposure of the entire pixel array to stop even the fastest motion with crystal clear images. It delivers 10-bit color or monochrome digital images with a 1.3-megapixel resolution at 500 fpsor 655 million pixels per second—for machine vision and high-speed imaging applications. The sensor can run at higher frame rates by reducing the window size (e.g., 4,800 fps for a 1,280 x 128 pixel window). Digital responsivity of 1,600 bits per lux-second and Micron's exclusive TrueBit® noise cancellation and Micron TrueColor™ image fidelity ensure high image quality.

The simple digital interface provides flexibility to control exposure time, frame rate, windowing functionality, and other parameters. Compared to charged-coupled device (CCD) based cameras, the MI-MV13 is much simpler to design a camera around, and it enables a faster time-to-market with a smaller, lower-power and higher-performance camera.

Applications

The MI-MV13 CMOS image sensor captures complex high-speed events for traditional machine vision applications, as well as various high-speed imaging applications. Its electronic shutter is capable of freezing and capturing near-instantaneous events with a 1.3-megapixel resolution while outputting 500 fps. The sensor can capture an event with a series of images taken at a high repetitive rate, enabling them to be viewed at lower speeds.

Applications include machine vision (production line monitoring and control for industries ranging from semiconductor fabrication to food sorting); automotive testing; microscopy; traffic control; 3D imaging; animation; motion analysis; film special effects; forestry; industrial and military research; and security systems. The MI-MV13's capabilities enable camera performance far beyond current CCD-based systems, creating an unprecedented number of possibilities for future applications.

New Part No.: MT9M413C36ST

Specifications

Array Format: 1,280H x 1,024V

(1,310,720 pixels)

Aspect Ratio: 5:4

Pixel Size 12.0μm x 12.0μm

and Type: TrueSNAP

Sensor Imaging H: 15.36mm V: 12.29mm Diagonal: 19.67mm Area:

Frame Rate: 0-500 fps @ (1,280 x 1,024)

>10,000 fps with partial scan [e.g., 0–4,800 fps @

(1,280 x 128)]

Output Data 660 MB/s (master clock, Rate: 66 MHz; ~500 fps)

Power

Consumption: <500mW at 500 fps

Digital 1,600 bits/lux-sec at 550nm Responsivity:

Internal Intra-**Scene Dynamic**

> Range: 59dB

Supply Voltage: +3.3V Operating

Temperature: -5°C to +60°C

Output: 10-bit digital video through

10 parallel ports

Color: Monochrome or color RGB

TrueSNAP freeze-frame Shutter: electronic shutter

Shutter

>99.9% Efficiency:

Shutter

<100ns to >33ms **Exposure Time:**

ADC: On-chip, 10-bit column

parallel

Package: 280-pin ceramic PGA

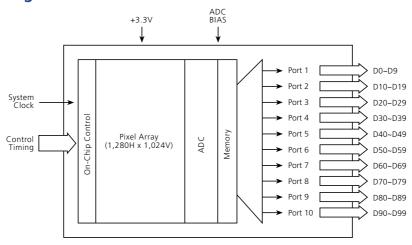
Controls: On-Chip:

ADC controls

Output multiplexing

ADC calibration

Off-Chip:


Window size and location

Frame rate and data rate

 Shutter exposure time (integration time)

ADC reference

Block Diagram

To learn more about Micron's imaging products, visit our Web site at www.micron.com/imaging, or call us at 208.368.3900.

