

FASTCAMERA SERIES

FASTCAMERA40
USER’S MANUAL

FVM-00400

 2

COPYRIGHT NOTICE

Copyright © 2003 by FastVision, LLC.

All rights reserved. This document, in whole or in part, may not be copied, photocopied, reproduced,
translated, or reduced to any other electronic medium or machine-readable form without the express
written consent of FastVision, LLC.

FastVision makes no warranty for the use of its products, assumes no responsibility for any error, which
may appear in this document, and makes no commitment to update the information contained herein.
FastVision, LLC. retains the right to make changes to this manual at any time without notice.

 Document Name: FastCamera40 User’s Manual

 Document Number: FVM-50040

 Revision History: 1.0 January 20,2003

1.1 March 26,2003

1.2 March 30,2003

1.3 April 9, 2003

2.0 August 19, 2004

Trademarks:
FastVision® is a registered trademark of FastVision, LLC..
Channel Link™ is a trademark of National Semiconductor.
3M™ is a trademark of 3M Company
MS DOS® is a registered trademark of Microsoft Corporation
SelectRAM™ is a trademark of Xilinx Inc.
Solaris™ is a trademark of Sun Microsystems Inc.
Unix® is a registered trademark of Sun Microsystems Inc.
Virtex™ is a trademark of Xilinx Inc.
Windows™, Windows 95™, Windows 98™, Windows 2000™, Windows NT™, and Windows
XP™ are trademarks of Microsoft

All trademarks are the property of their respective holders.

FastVision, LLC.
131 Daniel Webster Highway, #529

Nashua, NH 03060
USA

Telephone: 603-891-4317

Fax: 603-891-1881

Web Site:
http://www.fast-vision.com/

Email:

sales@fast-vision.com, or support@fast-vision.com

 3

TABLE OF CONTENTS

1 INTRODUCTION___ 5

2 FEATURES AND SPECIFICATIONS FASTCAMERA 40_____________________________________ 5
2.1 FASTCAMER40 IMAGE SENSOR SPECIFICATION__ 6
2.2 PHYSICAL SPECIFICATIONS ___ 8
2.3 CONNECTORS__ 9

2.3.1 Power Connector HR10A-10R-12PB ___ 9
2.3.2 Data Connector J1 ___ 9
2.3.3 Data Connector J2 ___ 9
2.3.4 Data Connector J3 __ 10

3 POWER REQUIREMENTS ___ 10

4 TIMING__ 10

5 TRIGGER MODES __ 10

6 READ OUT MODES ___ 10

7 STANDARD CAMERA DATA FLOW __ 15

8 THE STANDARD CAMERA FUNCTIONALITY ___ 15
8.1 EXPOSURE CONTROL ___ 15

8.1.1 Rolling shutter__ 16
8.1.2 Shutter Speeds__ 17

8.2 PIXEL GAIN AND OFFSET __ 17
8.3 MEMORY MODES (MEM) __ 17

8.3.1 FIFO memory mode ___ 17
8.3.2 Circular buffer memory mode__ 18
8.3.3 Image summing memory mode ___ 18

8.4 LOOKUP TABLE OPTION (LUT) ___ 18
8.5 DATA FORMAT FUNNEL ___ 18
8.6 INTERNAL CAMERA MEMORY __ 18

9 SENSOR CONTROL ___ 19

10 FLASH MEMORY ___ 22

11 CAMERA STATE STORAGE ___ 23

12 SERIAL CONTROL INTERFACE ___ 24

13 INTER-FPGA COMMUNICATION __ 29

14 EMBEDDED SOFT PROCESSOR CORE ___ 30

15 DATA FPGA __ 34
15.1 VIDEO DATA PATH OVERVIEW __ 35
15.2 OPERATING MODE CONTROL OVERVIEW __ 36
15.3 CAMERA STATE ___ 37

 4

15.4 DATAFPGA STATE CONTROLS __ 38
15.4.1 Camera Link Readout Mode ___ 38

15.4.2 Camera Link Clock Frequency setting ___ 40
15.4.3 Binning Control setting___ 40
15.4.4 Binning Multiplier setting ___ 41

15.5 FRAME RATES.__ 41
15.6 MEMORY OPERATION. __ 42
15.7 TECHNICAL DETAILS.___ 42
15.8 1 TAP MODE__ 43
15.9 2 TAP MODE__ 44
15.10 4 TAP MODE __ 44
15.11 8 TAP MODE __ 45
15.12 SENSOR INTERFACE __ 46

16 USB CAMERA OPTION __ 46

17 CAMERA CONTROL PROGRAM ___ 47

18 APPLICATION ENVIRONMENTS___ 47
18.1 USB OPERATION __ 47

18.1.1 The hardware connections are: __ 47
18.1.2 The software connections are: ___ 48

18.2 USING A FASTVISION SUPPLIED FRAMEGRABBER__ 48
18.2.1 The hardware connections are: __ 48
18.2.2 The software connections are: ___ 48

18.3 USING A THIRD-PARTY FRAMEGRABBER __ 49
18.3.1 The hardware connections are: __ 49
18.3.2 The software connections are: ___ 50

19 TROUBLESHOOTING ___ 51

20 FASTVISION TECHNICAL SUPPORT ___ 51

21 CONTACTING TECHNICAL SUPPORT ___ 51
21.1 RETURNING PRODUCTS FOR REPAIR OR REPLACEMENTS ______________________________________ 52
21.2 REPORTING BUGS ___ 53

 5

1 INTRODUCTION

The FastCamera 40 is a 4 megapixel CMOS camera with internal memory and FPGA’s that enable it to
do real-time processing. Thus it is what one would term a “smart” camera. The standard programming
that is supplied with the base camera forms the basis of the most used and demanded function for data
processing. It is expected that each customer may wish to customize this programming for their use.
This can be achieved by purchasing additional IP from FastVision or in-house development. Inquires or
discussions are always welcome.

2 FEATURES AND SPECIFICATIONS FASTCAMERA 40

The block diagram below shows the major subsystems in the camera. The camera is designed to support
many different applications by customization of the programmable logic in the camera. FastVision or the
customer can customize the size and content of the FPGAs and memory in the camera to contain many
different features, processing algorithms, and storage schemes. This manual discusses the ‘Standard’
version of the camera. Customization of the FPGAs in the camera, requires significant support from
FastVision. Please contact FastVision for a quote for the development tools and support.

4.0 MPixel
CMOS
Sensor

XC2VX000
FPGA

1-8 Million Gates

Camera
Control
LVDS

Link Receivers
(CC0-3)

(Async Serial)

66 MHz
Channel

Link Driver

66 MHz
Channel

Link Driver

(Optional)

128-1000 MB
DDRAM
200 MHz

Five 85 MHz
Channel Link

Drivers

FPGA
Boot
Flash

Memory

Controller
FPGA

Power
Supply

2-4 MB
SRAM

CC1
CC2
CC3
CC4

• The FastCamera40 uses a 2352H x 1728V (4 megapixel) CMOS digital image sensor capable of 240

frames/second operation at full resolution

• 2352H x 1728V image resolution

• 7-micron-square active-pixel photodiodes

• 240+ frames per second, progressive-scan

 6

• Maximum Frame Rate 400,000 fps at 1 x 2048 pixels

• Monochrome or Bayer pattern color

• Up to Five Channel links in three MDR26 connectors for the full frame rate

• Camera link Basic, Medium, Full and Full+(4, and 5 CL) supported

• FPGA and memory-based configurable interface formats and onboard processing

• Supported by a full range of software tools

• Digital binning in order to achieve increased Signal to Noise ratios at full frame rates

• Optional SRAM for ultra fast processing

• Optional additional DDRAM and increased FPGA size for additional processing capability

• Trigger-able electronic rolling shutter

• C mount lens

2.1 FastCamer40 Image Sensor Specification

• Uses Micron Imaging's MI-MV40 sensor

• 2352 x 1728 x 8 bits @ 240 fps (10 bits 240 fps)

• 15.36 mm x 12.29 mm active area

• 7-micron square active pixels

• 40% Fill Factor

• Monochrome or color (Bayer Pattern)

• On-chip Noise Cancellation

• Dynamic range 59 db

• Monochrome: 2500 bits per lux-second @ 550 nm

• Shutter 99.9% efficiency

• Noise 58 db (10 bit mode lowest sensor gain setting, nominal pixel of 512 counts)

• Sixteen (16) parallel output ports

• On-chip 10-bit analog-to-digital converters

 7

 8

2.2 Physical Specifications

12
.7

m
m

0 ref

39.5m
m

74.0m
m

0 ref
7m

m

132m
m

FastCam era40
Side View

12.7m
m

FastCam era40
Front V iew

FastCam era40
Bottom View

7m m
0 ref

0 ref

39.5m
m

79.0m
m

FASTCAM ERA40 CASE AND
M OUNTING DIM ENSIONS

FastCam era40
Back Panel

J3J2

P2 J1

 9

2.3 Connectors

2.3.1 Power Connector HR10A-10R-12PB
Pin Function
1 Ground
2 +5 Volts
3 Ground
4 Reserved for application dependent I/O
5 Ground
6 +5 Volts
7 Reserved for application dependent I/O
8 Ground
9 +5 Volts
10 Reserved for application dependent I/O
11 +5 Volts
12 Reserved for application dependent I/O

2.3.2 Data Connector J1
Pin Signal Pin Signal
1 Ground 14 Ground
2 CL1_TXOUT0N 15 CL1_TXOUT0P
3 CL1_TXOUT1N 16 CL1_TXOUT1P
4 CL1_TXOUT2N 17 CL1_TXOUT2P
5 CL1_TXCLKOUTN 18 CL1_TXCLKOUTP
6 CL1_TXOUT3N 19 CL1_TXOUT3P
7 SERTCP 20 SERTCN
8 CC1N 21 SERTFGP
9 CC2P 22 CC1P
10 CC3N 23 CC2N
11 CC4P 24 CC3P
12 SERTFGN 25 CC4N
13 Ground 26 Ground

2.3.3 Data Connector J2
Pin Signal Pin Signal
1 Ground 14 Ground
2 CL2_TXOUT0N 15 CL2_TXOUT0P
3 CL2_TXOUT1N 16 CL2_TXOUT1P
4 CL2_TXOUT2N 17 CL2_TXOUT2P
5 CL2_TXCLKOUTN 18 CL2_TXCLKOUTP
6 CL2_TXOUT3N 19 CL2_TXOUT3P
7 Application Specific

I/O (P)
20 Application Specific

I/O (N)
8 CL3_TXOUT0N 21 CL3_TXOUT0P
9 CL3_TXOUT1N 22 CL3_TXOUT1P
10 CL3_TXOUT2N 23 CL3_TXOUT2P
11 CL3_TXCLKOUTN 24 CL3_TXCLKOUTP
12 CL3_TXOUT3N 25 CL3_TXOUT3P

 10

13 Ground 26 Ground

2.3.4 Data Connector J3
Pin Signal Pin Signal
1 Ground 14 Ground
2 CL4_TXOUT0N 15 CL4_TXOUT0P
3 CL4_TXOUT1N 16 CL4_TXOUT1P
4 CL4_TXOUT2N 17 CL4_TXOUT2P
5 CL4_TXCLKOUTN 18 CL4_TXCLKOUTP
6 CL4_TXOUT3N 19 CL4_TXOUT3P
7 Application Specific

I/O (P)
20 Application Specific

I/O (N)
8 CL5_TXOUT0N 21 CL5_TXOUT0P
9 CL5_TXOUT1N 22 CL5_TXOUT1P
10 CL5_TXOUT2N 23 CL5_TXOUT2P
11 CL5_TXCLKOUTN 24 CL5_TXCLKOUTP
12 CL5_TXOUT3N 25 CL5_TXOUT3P
13 Ground 26 Ground

3 POWER REQUIREMENTS

Power requirements are a strong function of the application, the camera is 15 Watts worst case, 5 to 10
Watts typical. Low noise + 5 Volt input recommended. Internally the camera has high frequency switching
supplies that convert the 5 volt input to 3.3, 2.5 and 1.8 volts.

4 TIMING

� Camera Clock is configurable from 25 to 85 MHz depending on the application.

� Pixel data is valid when LVAL, FVAL and DVAL are true.

� Minimum two clocks LVAL and FVAL inactive between lines and frames.

� CC4 reserved for application specific needs.

5 TRIGGER MODES

Trigger modes are selected by serial commands.

� Free Running, camera generates frames without triggers.
� CC1 Positive edge triggered.
� CC1 When active, expose, falling edge reads out the sensor.

6 READ OUT MODES

The camera can be read out with 1,2,3,4, or 5 camera links, via the serial port (for the really patient), or
via the USB port. Only image data from the selected ROI is sent. The camera can be configured to read
out when the image is taken, to read out from memory on serial command or the CC2 positive edge.

 11

Note: The modes that use 3 channel links or less are according to the Camera Link Standard version 1.0.

 12

Data formats supported:
Mode Camera Link Format

MSB -------------------------------- LSB
Read Out Mode

0 CL1_A[7:0] Single tap 8 bits (Basic) (default)
1 CL1_B[1:0],CL1_A[7:0] Single tap 10 bits (Basic)
2 CL1_A[7:0] even pixels (0,2,...)

CL1_B[7:0] odd pixels (1,3,...)
Two Taps 8 bits (Basic)

3 CL1_B[1:0],CL1_A[7:0] even
CL1_B[5:4],CL1_C[7:0] odd

Two Taps 10 bits (Basic)

4 CL1_A[7:0] Red, Y
CL1_B[7:0] Green, U
CL1_C[7:0] Blue, V

Three Taps 8 bits (Color) (Basic)

5 CL1_B[1:0],CL1_A[7:0] Red, Y
CL1_B[5:4],CL1_C[7:0] Green, U
CL2_D[1:0],CL2_C[7:0] Blue, V

Three Taps 10 bits (Color) (Medium)

6 CL1_B[7:0],CL1_A[7:0]
CL1_A[4:0] Red, U
CL1_B[2:0],CL1_A[7:5] Green,Y
CL1_B[7:3] Blue V

One tap 16 Bits RGB565

7 CL1_A[7:0] pixels 4*n+0
CL1_B[7:0] pixels 4*n+1
CL1_C[7:0] pixels 4*n+2
CL2_A[7:0] pixels 4*n+3

Four Taps 8 bits (Medium)

8 CL1_B[1:0],CL1_A[7:0] 4*n+0
CL1_B[5:4],CL1_C[7:0] 4*n+1
CL2_C[1:0],CL2_B[7:0] 4*n+2
CL2_C[4:5],CL2_A[7:0] 4*n+3

Four Taps 10 bits (Medium)

9 CL1_A[7:0] pixels 5*n+0
CL1_B[7:0] pixels 5*n+1
CL1_C[7:0] pixels 5*n+2
CL2_A[7:0] pixels 5*n+3
CL2_B[7:0] pixels 5*n+4

Five Taps 8 bits (Medium)

10 CL1_B[1:0],CL1_A[7:0] 5*n+0
CL1_B[5:4],CL1_C[7:0] 5*n+1
CL2_C[1:0],CL2_B[7:0] 5*n+2
CL2_C[4:5],CL2_A[7:0] 5*n+3
CL3_C[1:0],CL3_B[7:0] 5*n+4

Five Taps 10 bits (Full)

11 CL1_A[7:0] R even
CL1_B[7:0] G even
CL1_C[7:0] B even
CL2_A[7:0] R odd
CL2_B[7:0] G odd
CL2_C[7:0] B odd

Six Taps 8 bits (Color) (Medium)

12 CL1_B[1:0],CL1_A[7:0] R even
CL1_B[5:4],CL1_C[7:0] G even
CL2_C[1:0],CL2_B[7:0] B even
CL2_C[4:5],CL2_A[7:0] R odd
CL3_C[1:0],CL3_B[7:0] G odd
CL3_C[5:4],CL3_A[7:0] B odd

Six Taps 10 bits (Color) (Full)

13 CL1_A[7:0] 8*n+0
CL1_B[7:0] 8*n+1
CL1_C[7:0] 8*n+2
CL2_A[7:0] 8*n+3
CL2_B[7:0] 8*n+4
CL2_C[7:0] 8*n+5
CL3_A[7:0] 8*n+6

Eight Taps 8 bits (Full)

 13

CL3_B[7:0] 8*n+7
14 CL1_B[1:0],CL1_A[7:0] 8*n+0

CL1_B[5:4],CL1_C[7:0] 8*n+1
CL2_B[1:0],CL2_A[7:0] 8*n+2
CL2_B[5:4],CL2_C[7:0] 8*n+3
CL3_B[1:0],CL3_A[7:0] 8*n+4
CL3_B[5:4],CL3_C[7:0] 8*n+5
CL2_FVAL,CL2_LVAL,CL2_SP,CL1_SP,
 CL1_B[7:6],CL1_B[3:2] 8*n+6
CL3_FVAL,CL3_LVAL,CL1_DVAL,CL3_SP
,
 CL2_B[7:6],CL2_B[3:2] 8*n+7

Eight Taps 10 bits (Full)

15 CL1_A[7:0] 16*n+0
CL1_B[7:0] 16*n+1
CL1_C[7:0] 16*n+2
CL2_A[7:0] 16*n+3
CL2_B[7:0] 16*n+4
CL2_C[7:0] 16*n+5
CL3_A[7:0] 16*n+6
CL3_B[7:0] 16*n+7
CL3_C[7:0] 16*n+8
CL4_A[7:0] 16*n+9
CL4_B[7:0] 16*n+10
CL4_C[7:0] 16*n+11
CL5_A[7:0] 16*n+12
CL5_B[7:0] 16*n+13
CL5_C[7:0] 16*n+14
CL2_FVAL,CL3_FVAL,CL4_FVAL,CL5_SP,
 CL4_SP,CL3_SP,CL2_SP,CL1_SP
16*n+15

16 Taps 8 bits (5 Camera Links)

 14

16 CL1_B[1:0],CL1_A[7:0] R 4*n+0

CL1_B[5:4],CL1_C[7:0] G 4*n+0
CL2_B[1:0],CL2_A[7:0] B 4*n+0
CL2_B[5:4],CL2_C[7:0] R 4*n+1
CL3_B[1:0],CL3_A[7:0] G 4*n+1
CL3_B[5:4],CL3_C[7:0] B 4*n+1
CL4_B[1:0],CL3_A[7:0] R 4*n+2
CL4_B[5:4],CL3_C[7:0] G 4*n+2
CL5_B[1:0],CL3_A[7:0] B 4*n+2
CL5_B[5:4],CL3_C[7:0] R 4*n+3
CL1_SP,CL1_B[7:6],CL1_[3:2],
 CL2_SP,CL2_B[7:6],CL2_[3:2] G 4*n+3
CL3_SP,CL3_B[7:6],CL3_[3:2],
 CL4_SP,CL4_B[7:6],CL4_[3:2] B 4*n+3

12 Taps 10 Bits (Color) (5 Camera Links)

17 CL1_B[1:0],CL1_A[7:0]
CL1_B[5:4],CL1_C[7:0]
CL2_B[1:0],CL2_A[7:0]
CL2_B[5:4],CL2_C[7:0]
CL3_B[1:0],CL3_A[7:0]
CL3_B[5:4],CL3_C[7:0]
CL4_B[1:0],CL3_A[7:0]
CL4_B[5:4],CL3_C[7:0]
CL5_B[1:0],CL3_A[7:0]
CL5_B[5:4],CL3_C[7:0]

10 Taps 10 Bits
FastCamera13

254 NA Use Serial Port
255 NA Use USB

Other modes are possible with custom FPGA configurations purchased from FastVision or developed in-
house.

 15

7 STANDARD CAMERA DATA FLOW

Sensor

128-1000MB
DDR

Memory

SRAM
LUT

By Pixel
Gain &
Offset

Data
Format
Funnel

Camera
LinksMem LUT

Exposure
Control

CC1
CC2CC3

Read
Memory

Serial
Settings

DDR
Tables

Clear
Memory

Or
Stop Filling

Trigger
Frame

Capture

ROI
Serial

Settings

Frame
Rate
And

Exposure
Serial

Settings

DDR Memory can be organized as a FIFO or as a circular buffer. CC3 is used to clear the memory (FIFO)
or stop filling the memory (circular buffer). CC2 is used to read the top most image from memory (FIFO) or
to read the oldest non-read image from memory (Circular buffer).

The LUT converts the input pixels (10 Bits) to the output pixel size (8 or 10 Bits). These tables can also be
used to improve the linearity of the sensor, or to set the gamma of the camera.

DDR Memory can be used for image averaging. In this mode images are summed into a 32 bit per pixel
buffer, which can be read out at any time (CC2) and/or cleared (CC3).
CC1,CC2, and CC3 can be replaced by Serial Commands, or can be always enabled or disabled for free
running operation.

8 THE STANDARD CAMERA FUNCTIONALITY

The ‘Standard’ Camera is a set of FPGAs designed to support most of the typical uses of the camera.
There is functionality that you will find is a good starting point for modifications. This design is copyrighted
IP from FastVision and forms the reference design, which is available from FastVision for use only with
the FastCamera40.

The frame rate and exposure can be controlled in several ways:

8.1 Exposure Control

 16

� Free Running Mode
� CC1 positive(or negative) edge triggered
� CC1 exposure control (positive or negative level triggered)
In Free Running Mode, the frame rate and exposure time is set via the serial port and the camera
acquires images without further outside control.

In CC1 edge triggered mode, the camera is triggered by the selected edge polarity to expose for
the time selected by the serial setting. Each edge of the CC1 input will cause the acquisition of an
image. If CC1 is toggled faster then the exposure and readout rate allows, the additional triggers
are ignored. Frame readout may overlap exposure in both sensors. The FastCamera40 has a
rolling shutter. The shutter speed granularity is approximately 2 microseconds. Finer resolutions
are possible see below.
In CC1 level triggered mode, the exposure is set by the active time of the CC1 input. When CC1
is asserted (programmable level high or low) the sensor is reset and integration begins. When
CC1 is de-asserted the sensor is read out. The exposure ends at the end of the line in which CC1
falls, or the end of the next line.

8.1.1 Rolling shutter
The FastCamera40 supports rolling shutter mode. The rolling shutter allows the camera
to operate faster, by resetting each line a programmable delay (the exposure time) before
it is read out. These two CMOS sensors use photo diodes as the active elements of the
sensor. When an exposure is started the diodes are emptied out by a reset process,
which clears all the stored charge from each diode. This reset process starts the
exposure for a particular pixel. After the exposure is complete, the charge in the photo
diode is read out to an amplifier and converter section in the sensor. This readout process
also resets the charge in the diode.

All the pixels in a line are readout and reset, or just reset at the same time. The rolling
reset process takes advantage of the readout process to set the exposure. When the
sensor is read out each line in turn is dumped into the converter to read out all the pixels
in a line. The sensor contains separate amplifiers and converters for each column in the
sensor (for the FastCamera 40 that is 2352 converters!). At the same time a line is read
out and reset from the sensor a different line can be reset. By selecting the line to be
reset, to be a line to be read out and reset in the near future, the exposure time is set to
the number of line times between the current line, and the future line being reset. While
this process allows exposure to occur while frame data is being read out, it is at a price. If
your light source is continuous, you will see a compression or extension of the moving
object that moves in the opposite or same direction as the readout. Typically this
compression is only apparent at very high frame speeds, and / or object speeds. If your
light source is a flash the compression will not occur as you can make sure all the lines
are exposing, before the flash.

The fastest a line can be read out from the sensors is in the time it takes for the
converters to convert the charge from the photodiodes, into digital values. In this sensor
this is 132 clocks. In the standard camera the sensor clock rate is 66.66 MHz, this means
the fastest the lines can be sampled is 1.98 microseconds per line. During this time a
partial line of 2048 pixels can be read out. In the FastCamera40 the additional pixels
extend the line time to 153 clocks or 2.29 microseconds per line. (Strictly speaking the
converter time is 128 clocks, but there is additional overhead in reading out the whole line
which brings the time to 153 clocks, please see the data sheets of the sensors for the
details.) If the number of columns in the ROI is less than 2048 in the FastCamera40 this
time is reduced to 132 clocks per line or 1.98 microseconds. The sensor can not be read
out faster than 1.98 microseconds per line.

 17

8.1.2 Shutter Speeds
The granularity of the shutter speed at the highest readout rate possible is 1.98
microseconds. This is not the whole story though. You may lengthen the line time by
programming the clocks per line register (see serial command 0x04 below). By slowing
down the line rate, you can dial the shutter speed (at the cost of maximum frame rate), to
any time above 132 clocks. So to get a shutter speed of 3.0 microseconds you would set
the clocks per line to 200 clocks. The highest full frame readout rate would be 192 full
frames per second.

8.2 Pixel Gain and Offset

The offset and gain of each pixel can be calibrated by setting the pixel gain and offset arrays in
the DDR memory of the camera. It is a good idea to do this as the large number of converters,
need to be calibrated for best results.

Note: Only the pixels in the selected ROI are processed (see serial commands 0x02 and 0x03).

The offset table is set by taking several images with no light input, averaging them and uploading
them to the offset (or dark field) table. These values are subtracted from the sensor pixel values
(clipped so less than zero values are zero), before applying the gain table values.

The gain table values are obtained by taking a defocused image of a uniform object, with enough
light to get to 75% of saturation at most on the brightest point in the image. Using the resulting
image, gain values are computed (in the simplest case the pixel values and the ratio with 75% of
full scale (191 (8 bit) or 768 (10 bits)) determines the gain.).

Note: It is assumed that you are trying for a uniformly lit field of view (i.e. a Flat Field). It is
important that you have as nearly as is practical uniform field of light, as large or small gain values
can introduce significant artifacts in your images.

The gain table contains 8 bit values, which are formatted unsigned 1.7 format, that is one binary
digit followed by 7 fractional digits. This makes the range of gains 1.992 down to 0.00390625.

The equation for the pixel gain and offset is:
CP[i,j] = Saturate((2*Gain[i,j]/256)* Clip (P[i,j] – Offset[i,j]))
CP = Corrected Pixel
P = Raw sensor Pixel
Clip = 0 if P[i,j]-Offset[i,j] is negative, otherwise its P[i,j]-Offset[i,j].
Saturate = FullScale if its input is greater than or equal to FullScale, otherwise it is it’s input
value.
FullScale = 255 for 8 bit pixels 1023 for 10 bit pixels.
The camera has 120 MB (or more) of memory which can be used to store images, and do
averaging. Each mode of operation is explained in the following sections. If the memory option is
enabled, then sensor data goes to memory instead of down stream.

8.3 Memory Modes (Mem)

8.3.1 FIFO memory mode
In this mode memory is used as a first in first out memory (FIFO). The memory fills with
images, until it is full, and then stops filling. At any time the user may request an image
from the FIFO with CC2, or via a serial command. This will make room for a new image,
which will be filled as soon as one is collected. This mode is typically used by systems

 18

that can accept images in bursts, but can not accept a continuous stream of images. For
example your system might take 8 images very fast and then read them out at a slower
rate (via a single camera link for example), your average frame rate is slow, but your
peak rate is high. If the host activates CC2 (or sends the serial command), it can cause
the next image to be read out when it comes in (pre-trigger the readout).

8.3.2 Circular buffer memory mode
In this mode the memory is used as a circular buffer. Each time an image is presented to
the memory it is stored over-writing the oldest image in the buffer. When CC2 goes active
(or via a serial command), the filling operation stops, after a selected number of frames
are added to the memory buffer (delayed trigger).
After the memory image collection stops, each time CC2 toggles (or by serial command)
the oldest remaining image is sent to the host. After the first CC2 is sent the host may
send the next CC2 right away it does not have to wait for the filling to finish. Each image
will be sent to the host as it becomes available.
After the memory is full the camera will not accept any more images until it is read out or
reset via CC3 (or serial command). If the host is draining images as fast as they are
coming in the image capture will never stop. A reset is required to re-arm the trigger and
delay the process.

8.3.3 Image summing memory mode
In this mode the memory is divided up into buffers the size of the selected ROI, but with
32 bit values. Each time an image is added to memory, it is added to the current average
buffer. When a programmed count of images is exceeded, the system advances to the
next buffer. When all the buffers are full, the system stops until it is read out (CC2) or
reset (CC3).

Note: as each buffer is read out (CC2) it is reset. If the host reads out the buffers faster
than they are collected, image collection will not stop. For example you can program the
camera to total 10 images in each buffer, before passing it to the host. The host triggers
the readout via CC2 (or serial command). The CC2 trigger may be sent at any time, the
camera will provide a total buffer when it becomes available.

8.4 Lookup Table Option (LUT)
If the lookup table option is enabled, the image data from up stream is passed through a lookup
table. This applies a point transformation to each pixel value, producing 10 bit results, from the 8
or 10 bit input. 32 Bit totals bi-pass the block. (Or better you should not enable this block if you are
doing image totaling, as it will only operate on the lower 10 bits of the total.)

8.5 Data Format Funnel
The data format funnel takes the image data and parcels it out the camera links (or USB) as
selected by the Format Funnel mode. If 8 bit data is selected the upper 8 bits of each pixel is
sent. (Note if you don’t like that use the LUT to change this behavior).
32 Bit data total buffers are sent as 8 bit data in little endian.

8.6 Internal Camera Memory
The camera contains at least 128 MB of internal memory which can be expanded to 1000 MB,
which can be used to FIFO the input images, to allow burst exposure, and slow readout operation.
Only the image data in the selected ROI is stored. A serial command or the positive edge of CC3
can be used to clear FIFO memory. In addition, the camera contains LUTs for conversion from
10 to 10 bit, or 8 bit data which can be uploaded via the serial port.

 19

9 SENSOR CONTROL

Line Timing

Sensor line and frame rates are controlled by the Camera State settings. The minimum line period
depends on the sensor type and the ROI width. When the Line Period setting exceeds the minimum
period, extra clocks are inserted between lines. The Line Valid period only depends on the ROI width and
sensor type. The number of columns read from the sensor is always a multiple of 10 for the MV13 and 16
for the MV40 sensor. Since the Data FPGA also has access to the ROI settings it is possible for the
actual ROI width (as sent to the frame grabber) to start and end on any pixel, however this is not
implemented. The Control FPGA ensures that the starting and ending pixels of the ROI are read from the
sensor. For the MV13 this means that as many as 9 pixels before and 9 pixels after the ROI could be
read from the sensor, depending on the starting and stopping pixel values modulo 10. For the MV40
sensor as many as 15 pre- and post-ROI pixels could be read from the sensor, depending on the starting
and stopping pixel values modulo 16. The software GUI is responsible for determining the actual number
of pixels per line based on the sensor and readout mode.

Camera-Link or USB readout rate can be the limiting factor for the line rate in non-memory modes. In this
case it is the GUI's responsibility to maintain the Line Period setting large enough to prevent FIFO overrun
in the Data FPGA.

Frame Timing

In free-running mode the minimum frame period depends on the ROI height and the line period. When
either the frame period or exposure time setting exceeds the minimum period, extra clocks are inserted
between frames. A 32-bit frame time counter allows frame periods from the minimum up to 64 seconds in
increments of 15 nS.

In triggered modes the frame period is also affected by the exposure delay. In multiple trigger mode the
exposure delay only affects the time until the first readout of the trigger sequence and subsequent frames
run at the free-running rate as specified. In single-trigger mode with external exposure control, applying
the trigger faster than the maximum rate will cause the camera to skip triggers and run at a submultiple of
the trigger frequency. In multiple trigger mode and internal timed trigger mode, applying the trigger faster
than the maximum rate will result in the camera running at the specified free-run rate.

Trigger pipelining is provided so that a trigger event which occurs during exposure or readout (just during
readout in external exposure mode) will generate another frame.

Exposure Modes

The MV13 sensor is normally used in TrueSNAP shutter mode. The sensor has analog frame storage
and a transfer gate that allows exposure to overlap readout while exposing all lines together. The MV40
sensor does not have analog storage and can only be exposed in a rolling shutter mode. Thus the
individual lines have different exposure windows which may or may not overlap depending on the line rate
and exposure time settings. This is the equivalent of using the MV13 sensor with the transfer gate on all
the time.

When viewing high-speed motion, the MV40 works best if the lines are read out at the maximum possible
rate while additional time for exposure or frame period is inserted between frames. This maximizes the
overlap in the line exposure times. Unfortunately in the non-memory readout modes with reduced output
rates just the opposite must be done. Long interline delays in these modes causes excessive temporal

 20

distortion in the moving image. This can appear as stretching or shrinking of vertically moving objects or
trapezoidal distortion of horizontally moving objects.

Trigger Modes

There are four basic trigger modes:

• Free-running mode ignores trigger inputs and reads out the sensor continuously at a programmed
frame rate with programmed exposure timing.

• Multi-frame edge-triggered mode activates a programmed number of exposures after a programmed
delay at a programmed frame rate with programmed exposure timing.

• Single edge-triggered mode activates a programmed exposure after a programmed delay.
• External exposure mode exposes during the active trigger period.

Free-running mode allows continuous readout at rates ranging from about one frame per minute to the
maximum capability of the sensor. Exposure can be programmed in increments of 15 nS up to the frame
period. There are gaps in the allowable exposure times due to interaction between the readout circuitry
and pixel reset in the MV13 sensor. In the MV40 sensor the exposure time is even more restricted due to
the rolling shutter mode of operation. The Control FPGA will generate the exposure timing as close as
possible to the requested value.

Multi-frame edge-triggered mode effectively starts the camera into free-running mode for a programmed
number of frames after a delay of zero to about 64 seconds programmable in 15 nS increments. The
active edge of the trigger activates the time delay and the first exposure starts after this delay. The
camera can be re-triggered during active readout. If the re-trigger event occurs too soon to start the
subsequent exposure after the programmed delay, the next exposure will start as soon as possible
thereafter. This prevents the effect of running at submultiples of the trigger rate when the trigger rate
exceeds the capability of the camera.

Single edge-triggered mode is the same as asynchronous multi-frame edge-triggered mode with the
frame count set to 1.

External exposure mode starts exposure as soon as possible after the active-going edge of the trigger
and stops exposure as soon as possible after the inactive-going edge of the trigger. For the MV13, this
provides an accurate exposure timing based on the trigger pulse width. For the MV40, limitations of the
rolling shutter limit the exposure timing resolution to the line readout rate unless the exposure time
exceeds the readout time. Subsequent exposures can overlap readout of the current frame in this mode.
This can place further restrictions on the exposure timing resolution in both sensor types.

The MV13 camera has "synchronous" and "asynchronous" modes of exposure. These only apply to free-
running and multi-frame modes. Single-frame and external modes are always "asynchronous." When the
synchronous trigger mode bit is set, the exposure timing is linked to the readout timing to avoid exposure
period jitter that can occur when the readout overlaps the exposure. In multi-frame triggered mode, the
synchronous mode also creates an additional delay of one readout time that must be added to the
programmed delay to find the actual delay to the first exposure.

Trigger Options

There are four trigger sources - Camera Link CC1, TTL trigger input, Serial, and USB (via I2C).
• The CC1 and TTL sources can be enabled or disabled. They can also be active high (positive-going

edge for edge-triggering or high level for external exposure) or active low (negative-going edge for
edge-triggering or low level for external exposure).

• The Serial source uses the "O" command. This cannot be disabled in the Control FPGA. It must be
disabled by the GUI if desired.

• The USB source uses writes to subaddress TBD. In external exposure mode two writes are required.
Writes to subaddress TBD with bit 0 high start the exposure, and writes to subaddress TBD with bit 0

 21

low end the exposure. This cannot be disabled in the Control FPGA. It must be disabled by the GUI if
desired.

Trigger Outputs

There are two trigger outputs, both TTL level on the P2 power connector. One output is high whenever
the sensor is exposing. The other is high during the programmed delay period in the two edge-triggered
modes.

Reference Voltages

All sensor reference voltages are programmable and generated by two LTC1660 octal D/A converters. At
power-up the DAC's are loaded with default values hard-coded into the Control FPGA. After the Data
FPGA has been loaded the DAC's are updated with the settings in the default camera state storage page
of flash memory.

Comparators in the Control FPGA check for changes in the DAC settings and re-load the DAC's
whenever the values are changed. This can happen as a result of the host command to set camera state,
or the host command to restore state from flash.

Calibration

Both the MV13 and MV40 sensors have automated ADC calibration to reduce column-wise fixed-pattern
noise. This is initiated at sensor reset or by using the CAL_START_N input. The Control FPGA always
uses the sensor reset to initiate calibration. In addition, the MV40 sensor allows direct access to the
internal calibration values on a serial interface consisting of the DATA_CLK, DATA, RE_N, and WE_N
pins. This version of the Control FPGA does not use this interface.

Automatic calibration is initiated after power-up when the sensor is released from reset. Reset is released
before the Data FPGA is loaded to allow the sensor to stabilize during the load process. Reset is re-
asserted for two clock cycles at the end of the initialization sequence, about TBD milliseconds after the
reference voltage DAC's are updated from flash. This causes the sensor to re-calibrate with the new
reference voltage settings.

After power-on initialization, the sensor is only calibrated on demand by the host using the Reset and
Calibrate Sensor command. It is not automatically calibrated after changing the reference voltages. Thus
the camera control GUI is responsible for periodic calibration as required.

Power-on Initialization

The Control FPGA has a small embedded micro that runs through an initialization sequence at power-on.
This same micro also implements the host, USB, and Data FPGA communication protocols and deals
with flash memory and DAC's.

1. Immediately after power-on, the voltage reference DAC's are programmed with factory default values.

This allows the sensor to stabilize under conditions close to the actual operating environment.
2. Page zero is read from the flash memory. This page holds information necessary to locate actual

power-on data in the flash.
3. The sensor is released from reset and allowed to self calibrate and stabilize.
4. The Data FPGA is loaded from flash. If the offset or length stored in the header are not valid, the

embedded micro skips to step 10. This may take several seconds depending on the FPGA size.
5. Camera State is read from one of the 8 pages as selected by the pointer in the header. If the pointer

is not valid (1 - 8) or the selected page is uninitialized, the embedded micro skips to step 10.
6. Reference DAC's are reprogrammed with the updated values from flash.
7. Camera State is forwarded to the Data FPGA.

 22

8. If the Pointer to the Data FPGA initialization area is valid and the length is valid and non-zero, the
Data FPGA initialization is read from flash and forwarded to the Data FPGA.

9. The sensor is briefly reset to start another auto-calibration cycle.
10. The embedded micro enters the command service loop.

10 FLASH MEMORY

Table 2 shows the layout of flash memory. The first page is used only for main header information.
Following this are eight pages for storing up to 8 camera states. Fast-Vision should reserve one of these
for factory defaults. The Control FPGA will not write protect the defaults page so the Camera Control GUI
should prevent the user from overwriting the factory settings, or it should have the factory default settings
available in the software to restore them without using the flash. Any of these states can be chosen as
the power-up default.

Flash Page Layout

Page Offset Pages Description
0 1 Flash Memory Header Page
1 1 Camera State Storage 1
2 1 Camera State Storage 2
3 1 Camera State Storage 3
4 1 Camera State Storage 4
5 1 Camera State Storage 5
6 1 Camera State Storage 6
7 1 Camera State Storage 7
8 1 Camera State Storage 8
9 1370 FPGA bitstream (sized for 2V1000 + 2V250)
1379 2716 Available for Data FPGA Initialization and User Data
4095 1 Reserved by Atmel

Table 2 - Flash Memory Layout

Table 3 shows the layout of the first page in flash memory. This contains enough descriptors for the
Camera Contol GUI to determine the camera type and its options. This data should only be programmed
by Fast-Vision. The camera GUI software must enforce this, as there is no write protection built into the
Control FPGA firmware. Multibyte values are little endian.

Page Zero Flash Header
Byte Offset Bytes Description

0 1 Flash Memory Part Type: 0x16 or 0x32 for 16 or 32 Mb flash
1 1 Flash Memory Revision ID: 0x01 for this revision
2 2 Offset in bytes to Camera ID data from top of page 0: 0x79 0x01
4 4 Flash page offset to FPGA data: 0x09 0x00 0x00 0x00
8 4 FPGA bitstream length in bytes

12 4 Flash page offset of Data FPGA initialization data
16 4 Data FPGA initialization data length in bytes
20 1 Camera State to load at power on (1 to 8)
20 357 Reserved for additional header / ID info

377 11 Part Number, ASCII "800??-5????"
388 3 Part Revision, ASCII "010"
391 9 Serial Number, ASCII "XXX??????"

 23

400 128 FPGA bitstream file header from mkbin, Null terminated string

Table 3 - Flash Memory Header Page

11 CAMERA STATE STORAGE

Internal to the Control FPGA all state is saved in a Block RAM. Copies of the current state can be saved
to the flash or uploaded to the host. The current state can also be retrieved from flash or changed by the
host. Only the host has random access to the camera state and this only when in setting state. Reading
back the camera state always sends the entire state to the host. Table 4 shows the layout of the camera
state memory. Except for sensor reference voltages, multibyte values are little endian.

Byte Offset (decimal) Bytes Description

0 4 C3, 5A, F0, 69 for detecting uninitialized buffers
4 2 Vln2: 14 D9
6 2 Vref1: 14 D9
8 2 Vtest: 20 00

10 2 Vref2: 23 E0
12 2 Vbias1: 30 00
14 2 Vref3: 32 E8
16 2 Vbias2: 40 00
18 2 Vref4: 41 36
20 2 Vbias3: 50 00
22 2 Vln1: 54 D9
24 2 Vbias4: 60 00
26 2 Vlp: 64 D9
28 2 Vunused1: 70 00
30 2 Vclamp3: 70 00
32 2 Vunused2: 80 00
34 2 Vrstpix: 8D 17
36 2 ROI Start Pixel
38 2 ROI End Pixel
40 2 ROI Start Line
42 2 ROI End Line
44 2 Line Period in Pixel Clocks
46 4 Exposure Time in Pixel Clocks
50 4 Frame Period in Pixel Clocks
54 4 Exposure Delay in Pixel Clocks
58 2 Serial Link Bit Period in Pixel Clocks
60 1 Camera Link Readout Mode
61 1 Camera Link Clock Frequency
62 1 Binning
63 1 Memory Options
64 1 Sensor Resolution - 8/10 bit
65 2 Trigger Mode (2nd Byte is Data FPGA dependent)
67 1 Frame count for Multi-Trigger mode
68 1 CC Mode: CC2, CC3, CC4 enable and edge select
69 59 Reserved for Control FPGA / base system extension

128 384 Available for Data FPGA functionality extensions

 24

Table 4 - Camera State Memory Layout

Sensor reference voltages are presented to the DAC's exactly as they are stored in the state. The order
listed above is the recommended order, but other orders may work. The format for these is MS byte first
with the most significant nibble indicating the command code to the DAC. Pairs of values are sent, one to
each DAC chip with the first going to U25 and the second to U26. Voltages are updated in the order sent.
Default values shown are for the FastCamera40. For more information see the LTC1660 data sheet.

Whenever the state memory is updated from host or flash, the actual internal registers that implement the
camera state change, too. Some of these are located in the Control FPGA and some in the Data FPGA.
The Control FPGA forwards state data to the Data FPGA whenever it is updated.

The state memory holds all of the state variables currently defined for camera operational modes as well
as some additional storage that can be defined as required for more sophisticated Data FPGAs. The
Data FPGAs can count on this storage to be refreshed from flash after initial FPGA load and whenever
the user restores state from one of the saved sets in flash.

In addition to the camera state storage pages, some of the flash memory is available for Data FPGA
storage requirements such as pixel defect maps. The amount of flash available for this depends on the
size of the Data FPGA and the size of the flash device. A pointer in the flash header in page zero
indicates the starting page of the Data FPGA initialization area. Its length in pages (which may be zero) is
stored in the flash header as well. Data from this initialization area is read out and sent to the data FPGA
after initial FPGA load. Although the data in these pages has no predefined layout, the first page must
start with the sequence 3C, A5, 0F, 96. This prevents transmission of uninitialized flash pages and serves
to identify the following data as Data FPGA Initialization Data rather than Camera State.

12 SERIAL CONTROL INTERFACE

Encoding

Commands and response use the 7-bit ASCII code zero-extended to 8 bits. This is sometimes referred to
as 8 bits, no parity or 7-bits space parity. For characters that require escape codes as listed below, the
8th bit is significant in the decoding, so only the normal character encoding needs to be escaped. For
example hex 0d requires the escape sequence but hex 8d does not.

The data within a command or response packet may contain 8-bit binary data with escaping as described
below. The camera requires only one stop bit for framing and sends one stop bit when responding.

Baud Rate

To comply with the Camera Link specification, the default baud rate is 9600. The serial baud rate can be
changed with a command on the serial link or via the USB port. To allow recovery after inadvertent
setting of a higher baud rate than the host can handle, the serial link will revert to 9600 baud after 5
framing errors without receiving a valid command. The factory default startup baud rate is 9600, but the
actual power-on baud rate can be changed via the user start-up settings.

Command Protocol

Commands all begin with a character in the range g-z or G-Z where the case is ignored.
Subsequent bytes of the command are command-specific, but most commands use hex characters 0-9
and a-f or A-F for the subsequent bytes. For commands using the hex encoding, all arguments are full
bytes. Thus an odd number of hex digits is considered a protocol error. For commands that use binary
encoding, the following character sequences are required:

 25

Character (hex, ASCII) Sequence
0d, <cr> \ <cr>
5c, \ \ \

All commands end in a non-escaped carriage-return, hex 0d.

When commands take arguments in hex, data must consist of pairs of hex characters representing full
bytes. Within each byte the most significant nibble is sent first, but for multi-byte values the least
significant byte is normally sent first. Thus when a command required a 32-bit value the string
"23568912" would produce the hex value 12895623. Commands using hex arguments will ignore space
characters, so "23568912" is equivalent to "23 56 89 12". Other characters will cause the command to
abort and respond with negative acknowledgement at the next non-escaped carriage-return.

The intent of the protocol is to allow hand typing of commands from a terminal except for long commands
like flash page write that would only be done using the Fast-Vision camera control GUI.

Response Protocol

Each command signals completion by sending the command character G-Z (always uppercased) followed
by any command-specific response and terminated with a non-escaped carriage-return, hex 0d. For
commands that respond with binary data, the carriage-return (0d) and backslash (5c) are escaped as in
the command protocol.

If a command cannot be completed for any reason the response will be the character ? (3F) and possibly
a numeric error code, followed by a carriage-return to indicate negative acknowledgement.

Here again the intent is to use ASCII only response except for long data sequences like flash page read.

Synchronization

The ASCII format of most commands combined with the escaped carriage-return in binary commands
allows simple resynchronization after errors. Sending two carriage-returns will always reset the serial link
to its default state, waiting for new command.

In addition, when the serial logic detects a framing error or protocol error, it will go into an idle state until
the next non-escaped carriage-return. During the idle state any serial data is ignored. Any carriage-
return which follows the idle state causes the negative acknowledgement sequence to be sent.

Timeout

If the serial logic is in a state waiting for a command to be completed and no input is detected for 5
seconds, it will reset to the waiting for new command state without sending any response. This would
typically happen after the serial link had noise from attaching or restarting the framegrabber.
*** TIMEOUT NOT IMPLEMENTED IN THIS VERSION ***

Command Forwarding

All commands are forwarded to the data FPGA. All responses from the data FPGA are forwarded to the
host. Starting commands on both the Control and Data FPGA's without waiting for completion may cause
interleaving of response codes.

 26

Command Set Overview

To simplify command processing, commands that are handled in the Control FPGA are assigned in
ascending order starting with "G," and commands for the Data FPGA are assigned in descending order
starting with "Z."

G - Get Camera State

This command takes no arguments. The camera responds with "G" followed by the current running state
of the camera (512 bytes as 1024 hex digits) and a carriage-return. This can be used to synchronize the
GUI with the camera at initial connection time. Camera state is sent as hex ASCII unlike the flash page
read. This is because the camera state is a single page worth of data, but flash page read is likely to be
used many times in a row to read large amounts of data such as the FPGA bitstream.

H - Ping Camera for Life

This command takes no arguments. The camera responds with "H" followed by eight hex digits and a
carriage-return. The eight hex digits indicate the value of a free-running 32-bit frame counter. This
counter indicates all frames read from the sensor since power on, not necessarily the number of frames
sent to the framegrabber. The number of grabbed frames depends on the memory functions such as
frame binning, FIFO and circular buffering. Successive pings can be used for a rough estimate of the
sensor frame rate.

I - Restore Camera State From Flash

This command takes one argument. The argument can be 01 to 08 and indicates which of the 8 flash
storage areas to retrieve the camera settings from. If the flash storage area is uninitialized the camera will
send a negative acknowledgement. Otherwise the camera responds with "I" followed by the flash storage
area number and a carriage-return. The Restore Camera State From Flash command only restores user
settable parameters other than the Data FPGA loads.

J - Initialize FPGA From Flash

This command takes no arguments. The Data FPGA is reloaded from the flash causing a complete re-
initialization of the readout logic. If the FPGA fails to load for any reason, the camera will send a negative
acknowledge and response code. Otherwise the camera responds with "J" followed by a carriage-return.
Failure results when the DONE signal does not go high after download, or if the INIT# signal is reasserted
after the bitstream has started to load. Either of these conditions indicates a bitstream error. The Control
FPGA does not check the bitstream for correct format or CRC, this is done by the FPGA. To reduce the
timeout length if the J command is issued when the flash is uninitialized, the bitstream bit counter only
loads the low 24 bits of the bitstream length from the flash header. This still allows up to 128 megabits of
bitstream, larger than the flash size. On error a response code is returned. The first byte is the reason
which may be 00 01 or 02. 00 indicates bad header flash part type. 01 indicates illegal starting page
address. 02 indicates load was attempted but did not complete. If the code is 02, six additional bytes are
sent indicating the number of bytes remaining when the operation aborted. This is usually zero, unless
the FPGA re-asserted the INIT line.

K - Save Current Camera State to Flash

This command takes one argument. The argument can be 01 to 08 and indicates which of the 8 flash
storage areas to store the camera settings in. The camera responds with "K" followed by the flash
storage area number and a carriage-return. This command only saves user settable parameters other
than the Data FPGA loads (512 bytes total).

 27

L - Write Flash

This command takes arguments that form the precise command to send to the flash memory. Data length
is limited by the flash page buffer size. There is no equivalent write command to "Continuous Array
Read". The intent of the command is to allow uploading the FPGA code and to write to flash areas that
need to be initialized at the factory. The data is not interpreted by the serial control logic. It is possible to
use this command to directly upload camera settings to the flash pages without changing the current
camera state.

This is the only Control FPGA command that uses binary encoded arguments (with escape codes for <cr>
and \). The exact syntax of the Write Flash command is:

'L' <opcode> <addr> <data> <cr>

where opcode is one byte, addr is 3 bytes, and data can be from zero to 528 bytes depending on the
command. The following opcodes are acceptable to use with this command (there is no error checking so
make sure these are the only codes used).
 0x84 Buffer 1 write
 0x87 Buffer 2 write
 0x83 Buffer 1 to main memory program with built-in erase
 0x86 Buffer 2 to main memory program with built-in erase
 0x88 Buffer 1 to main memory program without built-in erase
 0x89 Buffer 2 to main memory program without built-in erase
 0x81 Page Erase
 0x50 Block Erase
 0x82 Main memory page program through buffer 1
 0x85 Main memory page program through buffer 2

The following non-write commands are also implemented with Write Flash:
 0x53 Main memory Page to Buffer 1 Transfer
 0x55 Main memory Page to Buffer 2 Transfer
 0x60 Main memory Page to Buffer 1 Compare
 0x61 Main memory Page to Buffer 2 Compare
 0x58 Auto Page Rewrite through Buffer 1
 0x59 Auto Page Rewrite through Buffer 2

The camera responds with "L" followed by a carriage-return. Internally the Control FPGA waits for the
flash to become non-busy then starts the flash write operation. It does not wait for the flash to complete
(become not busy) after starting the command. Subsequent flash operations check the busy state of the
flash memory, allowing overlap of serial communication and flash programming. Theoretically a flash
write command without initial wait could give even more overlap by allowing write to a nonbusy buffer
while a previous write is ongoing, but in practice the flash page write timing is shorter than the serial
transmission time to send the command. At 115,200 baud it takes about 46 mS to send 528 bytes. The
flash page erase/write cycle is only 20 mS max.

M - Read Flash

This command takes arguments that form the precise command to send to the flash memory followed by
the command length and data length to be read in bytes. Command length includes any "don't care"
bytes required by the flash command selected. Data length is limited by the flash page buffer size for
most commands, but can be as large as the entire array if the Continuous Array Read flash command is
used. All arguments are ASCII hex. The exact syntax of the Read Flash command is:

'M' <opcode> <addr> <cmd_len> <data_len> <cr>

where opcode is one byte (2 hex digits), addr is 3 bytes (6 hex digits), cmd_len is one byte (2 hex digits),
and data_len is four bytes (8 hex digits). Most commands send the <opcode> and <addr> bytes to the

 28

flash and then require some number of "don't care" bytes before starting to read data from the flash. The
only exception is the status read command which sends only the command byte and has no additional
turn-around delay. When sending the status read command the <addr> bytes are "don't care", but must
be included in the command arguments. The following opcodes are acceptable to use with this command
(there is no error checking so make sure these are the only codes used).

 Opcode Command Command Length
 D4 Buffer 1 read 5
 D6 Buffer 2 read 5
 E8 Continuous array read 8
 D2 Main Memory Page Read 8
 D7 Status Register Read 1

This is the only Control FPGA response that uses binary encoded arguments (with escape codes for <cr>
and \).

The camera responds with "M" followed by escaped binary data from the flash and finally a non-escaped
carriage-return. Internally the Control FPGA waits for the flash to become non-busy then starts the flash
read operation. Thus the Status Register Read command is only useful to check the compare flag, since
the busy flag will always be off.

N - Set Camera State

This command takes a two byte (4 hex digit) offset into the current camera state as defined in Table 4 and
from one to to 512 bytes (2 to 1024 hex digits) of camera state data. The exact syntax of the Set Camera
State command is:

'N' <addr> <data> <cr>

where <addr> is 4 hex digits of offset per Table 4 and <data> is 2 to 1024 hex digits (always a multiple of
2) of data which will be stored sequentially into the current camera state as shown in Table 4. Actual
registers affected by the command are updated as the data comes in, except where further
synchronization is required such as multibyte values and values that change only between frames. The
Control FPGA always responds with "N" followed by a carriage-return even if the affected state is handled
by the Data or DDR FPGAs. If the baud rate is changed, the command response happens at the original
baud rate.

O - Serial Trigger

This command takes no arguments. This command has the same effect as pulsing the CC1 line high for
the time period between receipt of the 'O' and receipt of the carriage-return. Although this command
would normally be used only in edge-triggered mode, it can also be used in external exposure mode for
long exposures (minimum exposure is limited by the serial baud rate). To support this mode, any
characters between the "O" and the <cr> are ignored. Thus the total command length in characters can
be used to determine the exposure time. The camera responds with "O" followed by a carriage-return.

P - Reset and Calibrate Sensor

This command takes no arguments. It causes the sensor's LRST_N signal to be pulsed low for two clock
cycles. The sensor is reset and performs an auto-calibration. This command is applied by the readout
logic between frames. If enabled, the CC4 line will also initiate this command allowing operation without
the GUI. The camera responds with "P" followed by a carriage-return.

 29

X - Send Initialization Data to Data FPGA

This command takes any number of bytes (even number of hex digits) of FPGA initialization data. The
exact syntax of the Send Initialization Data command is:

'X' <data> <cr>

where <data> is an even number of hex digits of data which can be used for any function required by the
Data FPGA. This command is sent by the Control FPGA to the Data FPGA upon power-on initialization
and after the 'J' command (Initialize FPGA from Flash). It is also possible for the host to issue this
command via the Camera Link serial interface, but be aware that the Data FPGA does not issue a
response.

Y - Readout Image

This command takes no arguments. This command is only effective in the memory readout modes. If
enabled, the CC2 line will also initiate this command allowing operation without the GUI. The Data FPGA
will respond with "Y" followed by a carriage-return.

Z - Reset Memory

This command takes no arguments. This command is only effective in the memory readout modes. If
enabled, the CC3 line will also initiate this command allowing operation without the GUI. The Data FPGA
will respond with "Z" followed by a carriage-return.

13 INTER-FPGA COMMUNICATION

Serial Commands

Commands from the host are buffered and passed to the Data FPGA on the FPGA_CTL3 wire. The Data
FPGA therefore receives all commands from the host and can act on them accordingly. This allows
extensions to be made to the command set for Data FPGA use. To reduce logic in the Data FPGA, each
character is buffered and retransmitted at 66 MHz, synchronous to the FPGA_SYSCLK. In this way the
data FPGA doesn't need to know about baud rate and can start up monitoring commands even before it
receives the camera state data.

Flash Data

In addition to forwarding commands from the host, the Control FPGA also uses the FPGA_CTL3 wire to
send camera state data when the Restore Camera State From Flash command is received. It also uses
the FPGA_CTL3 wire to send camera state data and Data FPGA initialization data from flash to the Data
FPGA when the Initialize FPGA From Flash command is received. The Control FPGA only responds to
the host after it has completed the required data transfer(s). The host must always wait until it receives
the response before sending another command.

When transmitting camera state data to the Data FPGA, the Control FPGA uses the same syntax as the
Set Camera State command with the starting address set to zero and a data length of 512.

When transmitting Data FPGA initialization data to the Data FPGA, the Control FPGA uses the same
syntax as the Set Camera State command with the starting address set to all ones (65,535) and a data
length as set in the Page Zero Flash Header. If the header indicates a zero data length, or the
initialization data does not start with 3C A5 0F 96, the Control FPGA will not send this command.

 30

Serial Responses

Normally the data sent to the Data FPGA from the Control FPGA is limited in bandwidth at the source,
either by the host serial baud rate or the flash memory read rate. Response data from the Data FPGA,
which always gets forwarded to the host, must be sent at the host baud rate. To reduce the redundant
logic requirement in the Data FPGA, the Control FPGA uses the FPGA_DDRCLK wire to send a baud
rate pulse train. This signal is high for one cycle of FPGA_SYSCLK once per serial link bit period. The
Data FPGA then uses this as a shift enable for its response transmitter.

Serial response data from the Data FPGA is forwarded to the host directly by ANDing with the serial
response data from the Control FPGA. For this reason it is especially important that the host does not
send a new command before the previous command response has been received.

14 EMBEDDED SOFT PROCESSOR CORE

The Control FPGA includes a "PicoBlaze" 8-bit controller core, programmed in assembly language, that
takes care of most low-speed complex operations. This soft processor handles serial protocol, flash
memory, FPGA configuration, and power-on initialization. The architecture of this core is Harvard, using a
1K by 18-bit wide instruction memory composed of 5 block RAMs, and an 1K by 8-bit wide data memory
composed of four block RAMs. The core was designed and optimized to run in the Virtex 2 series of
Xilinx FPGA's and then adapted for the Spartan 2. It therefore is not very fast. In the MV13 it runs at 33
MHz and in the MV40 it runs at 25 MHz (1/2 the pixel clock rate). The instructions run in a fixed 2-cycle
period with essentially no pipelining. This simplifies instruction sequence timing calculations.

The PicoBlaze data address space is only 256 bytes. If you look at the processor documents from Xilinx
you'll find this called I/O rather than data. In our case the data space connects to 1K bytes of internal
block RAM using three additional banking bits implemented as register. Access to the entire 1K of RAM
as well as 8 registers is accomplished with some stunt logic. Registers normally appear at addresses
0xf8 through 0xff regardless of the state of the three banking bits. When register access is enabled,
writes are shadowed in the block RAM at 0x6f8 through 0x6ff regardless of the state of the three banking
bits. Register access can be disabled by reading or writing location 0xf7 and re-enabled by reading or
writing locations 0 through 0xf6. In this manner a program can sequentially access the entire RAM by
temporarily disabling register access. A special bit, bit 0 of register 0xff toggles each time any read is
performed. This allows a simple test of the current state of the register access enable by reading location
0xff twice and comparing the two values.

The high 256 bytes, from 0x700 through 0x7ff, are dual-ported with the I2C slave unit. This provides a
simple interface for introducing commands via USB.

"Fget8" Speed-up logic

Because the PicoBlaze runs relatively slow, there is a small sequencer to speed up FPGA configuration
and flash data read. This is kicked off by a write to register 0xfe with bit 6 set. The sequencer runs the
flash clock for 8 cycles, and if the fpga CCLK was high, copies the flash DOUT output to the FPGA
configuration DIN input cycling the FPGA CCLK 8 cycles as well. The PicoBlaze is responsible for
making sure the flash is in the appropriate state when this sequencer is started. Generally it only speeds
up the inner loop of FPGA configuration and flash data read, but this is where the largest time is spent.
Using the algorithm from previous PicoBlaze designs (Video Combiners) and bit wiggling, the best data
rate for FPGA download would be about 1.5 MHz for CCLK. With the "Fget8" speed-up logic the rate
should be about 9 MHz. This allows even large FPGA's to be loaded in under 2 seconds.

PicoBlaze Memory Map

Address Description

 31

000 - 1FF Camera state storage. Sensor registers shadow locations in 000 - 0FF
200 - 3FF Header storage. Loaded from flash page 00 at power-up.
400 - 6F7 Working memory for host commands.
6F8 - 6FF Register shadow memory for readback of otherwise write-only bits.
700 - 7FF I2C shared area.

PicoBlaze Register Map

All of the following registers can only be accessed when the register access enable signal is set. This is
accomplished by making any access to locations 00 through 0xf6. Any access to location 0xf7 clears the
register access enable signal. Accesses within the 0xf8 through 0xff register area do not affect the state
of the register access enable signal.

0xF8 Baud Rate Period, low 8 bits and Frame Count.
0xF9 Baud Rate Period, high 8 bits and Fget8 data.

The Baud rate is derived by dividing the pixel clock frequency by the number entered here. In the
MV40, the pixel clock runs at 66.667 MHz and the default setting for 9600 baud would be 6944.
The last value written to the Baud Rate high 8-bits register can be read back from scratchpad
location 0x2f9 when register access is disabled. When register access is enabled, reading 0xF9
returns the byte of flash data from the "Fget8" sequencer. Reading 0xF8 returns the frame count
in four successive reads. Frame count is latched whenever address 0x00 is read.

0xFA Sensor Control. Bits are:
7 Read-only "Y" pending. Indicates that a CC2 event has occurred and the PicoBlaze

should forward it to the Data FPGA as a "Y" command.
6 Read-only "Z" pending. Indicates that a CC3 event has occurred and the PicoBlaze

should forward it to the Data FPGA as a "Z" command.
5 Reserved.
4 Serial trigger. Must be toggled in software to trigger the sensor control logic in response

to a serial trigger command.
3 Reserved.
2 Calibrate sensor. This is a pulsed signal that schedules a calibration when this bit is

written to 1. Writing this bit to zero has no effect. Actual calibration may happen much
later, since the sensor control logic schedules calibration only between frames.

1 Sensor standby. Setting this bit to one places the sensor in low-power standby mode.
0 Dark offset enable. Setting this bit allows the sensor to apply internal calibration factors

to reduce fixed column noise.
0xFB Address Extensions. Bits 3 through 7 are reserved. Other bits are:

2,1,0 Banking bits. These bits form the two high address bits to the 1K byte data RAM, except
during register access. During register access the high bits are fixed at 6, thus register
writes are always shadowed in the 7th of 8 banks, allowing readback of registers that
don't have separate read functionality from the shadow RAM. When bank 0 is selected,
sensor register write is enabled.

0xFC Serial to FPGA and Serial Status.
 When written, this register causes a byte of data to be transmitted to the Data FPGA. On reads
Bits 0 through 6 are reserved. Other bits are:
7 Transmitter to FPGA ready for data.
6 Transmitter to FPGA overrun error. Set if write was attempted when the transmitter

wasn't ready for data. Cleared when the next data is written when the transmitter is ready
for data.

0xFD UART to/from Camera Link.
 Writing this location sends a byte of serial data to the framegrabber. Reading gets a byte of
serial data and acknowledges its receipt. See the status bit descriptions below for more
information.

0xFE DAC and Flash Control / Flash and UART Status. Bits are:

 32

7 Reserved on write, RxData Available on read. When this bit is 1, there is data available
to be read from the UART via register 0xFD. The validity of the current data depends on
the error bits listed below. This and other receive status bits are cleared when the UART
is read.

6 "Fget8" on write, Transmiter Ready on read. Writing this bit to one starts the sequencer
for speeding up flash read and fpga configuration write. Writing this bit to zero has no
effect. When 1 this bit indicates that the UART is ready to accept a byte of data to
transmit to the framegrabber.

5 DAC chip select on write, Receiver framing error on read. DAC chip select is asserted
high. This bit is inverted before driving the chip's active low pin. Receiver framing error
indicates that a zero was detected in the stop bit position. This condition is cleared when
the UART is read.

4 DAC serial clock on write, Receiver overrun error on read. DAC serial clock runs directly
to the DAC chips. Receiver overrun indicates that a new character came in when the
previous character had not been read. In this case the older data is lost and the data in
the UART is the one causing the overrun, i.e. the most recent character received. This
condition is cleared when the UART is read.

3 Flash chip select on write, Transmit overrun on read. Flash chip select is asserted high.
This bit is inverted before driving the chip's active low pin. Transmit overrun is set if a
write was attempted when the transmitter wasn't ready for data. This condition is cleared
when data is written to the UART and the transmitter is ready for data.

2 Flash reset on write, transmitter empty on read. Flash reset is asserted high. This bit is
inverted before driving the chip's active low pin. Transmitter empty is active when no data
transmission is pending. This must be checked before changing the baud rate to ensure
any pending characters finish transmitting at the current baud rate.

1 Flash serial clock on write, Flash ready on read. These correspond directly to the flash
pin functions.

0 Shared Flash and DAC serial data in on write, Flash data out on read. These correspond
directly to the respective pin functions.

0xFF FPGA Configuration. Bit 6 is reserved. Other bits are:
7 Read only "Fget8" status. This is high when the sequencer is still running from a prior

operation.
5 FPGA Loaded on write, FPGA Done on read. Writing this bit high indicates that the

program has finished loading the data FPGA and enables the pinsaver muxes. FPGA
Done is the configuration pin function.

4 FPGA M1 on write, FPGA INIT on read. M1 is the configuration mode bit. Other mode
bits are pulled up. Writing 1 sets the Data FPGA into slave serial mode for configuration
load by the Control FPGA. Writing 0 sets the Data FPGA into JTAG mode for
configuration by external Xilinx Parallel Cable. FPGA Init is inverted from the active low
configuration /INIT pin.

3 Read only FPGA Data Out. This allows readback functions to be implemented in the
future.

2 Write only FPGA Program. This bit is inverted before driving the chip's active low pin.
Setting this bit to 1 resets the Data FPGA configuration.

1 FPGA Configuration Clock on write, Configuration Timeout on read. Writing this bit
directly affects the FPGA CCLK pin except when the "Fget8" sequencer is running. In
that case this bit enables Flash to FPGA data transfer if it is 1. Running "Fget8" while this
bit is 0 will not cause any changes to the FPGA DIN or CCLK signals. Configuration
Timeout goes high if there have been 16,777,216 CCLK clocks since Program was last
asserted. This can be used as a simple timeout mechanism for a program that only
checks the Done and Init status during FPGA configuration.

0 FPGA Data In on write, Access Test Bit on read. During FPGA configuration this is the
serial data to the Data FPGA. After configuration it could be used as an additional control
line to the Data FPGA. The Access Test Bit toggles on any port read. Thus reading this
register twice in a row will always provide different data. This can be used to test whether
the register access enable signal is active.

 33

Sensor Register Map

All of the following registers can only be accessed when the sensor register write enable signal is set.
This is bit 2 of register 0xfb. Writing these registers will also cause the values to be shadowed in the
scratchpad RAM at whatever page is currently indicated by bits 1 and 0 of register 0xfb. Thus although
the registers themselves are write-only, there is a copy in the scratchpad RAM immediately after writing
them. The scratchpad copy can obviously be overwritten without affecting the sensor registers if the
sensor register write enable bit is off. The layout of these registers intentionally matches the flash state
storage.

0x24 Start Pixel, low 8 bits.
0x25 Start Pixel, high 8 bits. This is the leftmost pixel in the ROI. Pixels are numbered from 0 to the

sensor width - 1. This is different from the old ROI settings which worked in pixel clocks. The
sensor control logic handles the conversion from pixels to clocks. If the starting pixel is not a
multiple of the sensor readout width (10 for MV13 or 16 for MV40) there will be some prescan
pixels in the resulting image. In the future we may want to add logic in the data FPGA to mask
out the prescan pixels.

0x26 End Pixel, low 8 bits.
0x27 End Pixel, high 8 bits. This is the rightmost pixel in the ROI. Pixels are numbered from 0 to the

sensor width - 1. This is different from the old ROI settings which worked in pixel clocks. The
sensor control logic handles the conversion from pixels to clocks. If the ending pixel is not one
less than a multiple of the sensor readout width (10 for MV13 or 16 for MV40) there will be some
postscan pixels in the resulting image. In the future we may want to add logic in the data FPGA to
mask out the postscan pixels.

0x28 Start Line, low 8 bits.
0x29 Start Line, high 8 bits. This is the top line in the ROI. Lines are numbered from 0 to the sensor

height - 1. Only lines in the ROI are scanned.
0x2A End Line, low 8 bits.
0x2B End Line, high 8 bits. This is the bottom line in the ROI. Lines are numbered from 0 to the

sensor height - 1. Only lines in the ROI are scanned.
0x2C Line Period, low 8 bits.
0x2D Line Period, high 8 bits. This is the line readout time in pixel clocks - 1. i.e. the actual period is

one clock more than this number.
0x2E Exposure Period, bits <7:0>
0x2F Exposure Period, bits <15:8>
0x30 Exposure Period, bits <23:16>
0x31 Exposure Period, bits <31:24> This is the desired exposure time in pixel clocks. Actual

exposure time may vary, especially if readout overlaps exposure.
0x32 Frame Period, bits <7:0>
0x33 Frame Period, bits <15:8>
0x34 Frame Period, bits <23:16>
0x35 Frame Period, bits <31:24> This is the desired frame readout period in pixel clocks - 1. i.e. the

actual period is one clock more than this number.
0x36 Delay Period, bits <7:0>
0x37 Delay Period, bits <15:8>
0x38 Delay Period, bits <23:16>
0x39 Delay Period, bits <31:24> This is the desired delay from trigger to exposure in edge-triggered

modes. It is not used in free-running or external exposure modes. Actual exposure delay may
vary, especially if readout overlaps exposure.

0x41 Trigger Mode. Bit 7 is reserved. Other bits are:
6 Invert TTL Trigger. Setting this bit to 1 indicates the TTL trigger input on P2 is active low

level, or falling edge.
5 Enable TTL trigger. Set this bit to 1 to enable TTL trigger input on P2. Clear to 0 to

disable TTL trigger input.

 34

4 Synchronous Exposure. This bit only affects free-run and multi-frame edge-triggered
modes. When this bit is set, the readout timing is synchronized to the exposure.

3 Invert Camera Link CC1 Trigger. Setting this bit to 1 indicates the CC1 trigger input on
Camera Link is active low level, or falling edge.

2 Enable Camera Link CC1 trigger. Set this bit to 1 to enable CC1 trigger input on Camera
Link. Clear to 0 to disable CC1 trigger input.

1:0 Trigger Mode.
0 Free-running mode.
1 Multi-frame edge-triggered mode.
2 Single edge-triggered mode.
3 External exposure mode.

0x43 Trigger Count. Total number of frames to capture in multi-frame edge-triggered mode. 0 to 255
program 0 to 255 frames.

0x44 CC Mode. Enable and active edge of CC2, CC3, and CC4 command inputs. Bits 7, 6 are
reserved. Other bits are:
5 Invert CC4. Setting this bit to 1 indicates the CC4 input is active on falling edge. Setting

this bit to 0 indicates the CC4 input is active on rising edge.
4 Enable Camera Link CC4. Set this bit to 1 to enable CC4 Sensor Calibration. When

enabled, the active edge of CC4 causes the sensor to be reset and calibrated at the next
appropriate time.

3 Invert CC3. Setting this bit to 1 indicates the CC3 input is active on falling edge. Setting
this bit to 0 indicates the CC3 input is active on rising edge.

2 Enable Camera Link CC3. Set this bit to 1 to enable CC3 Reset Memory. When
enabled, the active edge of CC3 causes the memory to be reset.

1 Invert CC2. Setting this bit to 1 indicates the CC2 input is active on falling edge. Setting
this bit to 0 indicates the CC2 input is active on rising edge.

0 Enable Camera Link CC2. Set this bit to 1 to enable CC2 Readout Image. When
enabled, the active edge of CC2 causes the current memory image to be read out.

15 DATA FPGA

The system level block diagram for the FPGA is shown below.

 35

15.1 Video Data path overview
The DataFpga accepts video data from the sensor and formats it for transmission over the Camera Link
outputs or USB interface. The ControlFpga controls the sensor data output and sends Lval (line valid) and
Fval (frame valid) signals to the DataFpga. The data from the sensor is valid when Lval and Fval are
asserted. Data progresses through to the FIFO (or output to the DDR Fpga in memory mode) at the pixel
rate of the sensor and is the width of the sensor data (100 or 160 bits wide).

The video data from the sensor is sent to the DataFpga over the HSD[47:0] and Mvdata[99:96] signal
lines. The MV13 sensor clocks out ten 10bit pixels (100 bits total) each clock (at 66Mhz) and the MV40
sensor clocks out sixteen 10bit pixels (160 bits total) each clock (60Mhz).These data lines are multiplexed
to the DataFpga over the HSD (high speed data) signal lines at 2x the pixel rate in order to reduce the I/O
count needed by this Fpga. The DataFpga demultiplexes this data and synchronizes it with the non
multiplexed data from the sensor and the control signals from the ControlFpga.

The video data is then sent into the vertical binning module. This module accumulates the programmed
number of rows of video data and then forwards the binned row of data to the horizontal binning module. If
vertical binning is active then the frame height is reduced by the binning factor. The vertical binner
produces 140 bits of video data as ten 14bit pixels. The horizontal binning module adds together the
programmed number of pixels and then forwards the reduced row of data to the FIFO input mux. The
horizontal binner produces 180 bits of data as ten 18bit pixels. The FIFO input mux selects either the
upper or lower 16bits from each 18 bit pixel based upon the binning multiplier mode selection (also known
as Sensor Resolution). The video data is then stored in a large FIFO along with the state of Lval/Fval for
each block of ten (or 16) pixels.

 36

The section of the FPGA that reads the video data from the FIFO operates at the specified Camera Link
clock rate. This rate can be selected to be 33, 42.5, 66 or 85Mhz. The output state machine controls the
reading of the FIFO and outputting the data to the camera links based upon the selected number of
Camera Link taps and the pixel width selected. There are a multitude of Camera Link modes supported by
this camera, from basic one tap mode up to ten tap 80bit mode.

The output stage over the Camera Link does not use the Dval signal as defined within the Camera Link
specification. This is done to insure compatibility with a variety of framegrabbers. In order to do this, the
output state machine waits until enough data has been accumulated in the FIFO in order to not under-run
the FIFO while the line of video data is being output. This is only a concern at higher output modes like 8
to 10 tap modes running at 66 or 85Mhz Camera Link output clock speeds. This does not affect the
maximum frame rate achievable by this camera, it just insures that once Lval is asserted out the Camera
Link the whole line of data will be output without gaps.

15.2 Operating mode control overview
The operating state of the DataFpga is set by the ControlFpga or by the host via the serial interface. The
ControlFpga can load stored camera configurations from the system flash memory at powerup or when
directed to load different configurations by the host.

 37

Internal to the ControlFpga all the camera state is saved in a Block RAM. Copies of the current state can
be saved to the flash or uploaded to the host. The current state can also be retrieved from flash or
changed by the host. Only the host has random access to the camera state and this only when setting
state. Reading back the camera state always sends the entire state to the host. Table 4 shows the layout
of the camera state memory. Except for sensor reference voltages, multibyte values are little endian. The
values shown in bold apply to the DataFpga and the values shown in grey apply to the ControlFpga.

Byte Offset (decimal) Bytes Description

0 4 C3, 5A, F0, 69 for detecting uninitialized buffers
4 2 Vln2: 14 D9
6 2 Vref1: 14 D9
8 2 Vtest: 20 00

10 2 Vref2: 23 E0
12 2 Vbias1: 30 00
14 2 Vref3: 32 E8
16 2 Vbias2: 40 00
18 2 Vref4: 41 36
20 2 Vbias3: 50 00
22 2 Vln1: 54 D9
24 2 Vbias4: 60 00
26 2 Vlp: 64 D9
28 2 Vunused1: 70 00
30 2 Vclamp3: 70 00
32 2 Vunused2: 80 00
34 2 Vrstpix: 8D 17
36 2 ROI Start Pixel
38 2 ROI End Pixel
40 2 ROI Start Line
42 2 ROI End Line
44 2 Line Period in Pixel Clocks
46 4 Exposure Time in Pixel Clocks
50 4 Frame Period in Pixel Clocks
54 4 Exposure Delay in Pixel Clocks
58 2 Serial Link Bit Period in Pixel Clocks
60 1 Camera Link Readout Mode
61 1 Camera Link Clock Frequency
62 1 Binning control (horizontal and vertical binning

multipliers)
63 1 Memory Options
64 1 Binning Multiplier
65 2 Trigger Mode (2nd Byte is Data FPGA dependent)
67 1 Frame count for Multi-Trigger mode
68 1 CC Mode: CC2, CC3, CC4 enable and edge select
69 59 Reserved for Control FPGA / base system extension

128 384 Available for Data FPGA functionality extensions

Table 4 - Camera State Memory Layout

Whenever the state memory is updated from host or flash, the actual internal registers that implement the
camera state change, too. Some of these are located in the Control FPGA and some in the Data FPGA.
The Control FPGA forwards state data to the Data FPGA whenever it is updated.

15.3 Camera State

 38

15.4 DataFpga State controls
The following section details the modes selectable within the DataFpga.

15.4.1 Camera Link Readout Mode
This byte controls the operating mode of the Camera Link Interface. The table below shows the ‘ports’
assigned to each camera link connector output for the selectable modes. The Camera Link specification
defines three 8bit ports A,B,C per each Camera Link channel which consists of 5 wires. In the table below
CL1 is the Camera Link channel on connector J1. CL2 and CL3 are Camera Link channels on connector
J2.

Mode hex

value
Camera Link Format

MSB -------------------------------- LSB
Read Out Mode

0x00 CL1_A[7:0]

Single tap 8 bits (Basic)

0x01 CL1_B[1:0],CL1_A[7:0] Single tap 10 bits (Basic)
(default mode)

0x02 CL1_B[3:0],CL1_A[7:0]

Single tap 12-bits (Basic)

0x03 CL1_B[7:0],CL1_A[7:0]

Single tap 16-bits (Basic)

0x04 CL1_A[7:0] even pixels (0,2,...)
CL1_B[7:0] odd pixels (1,3,...)

Two Taps 8 bits (Basic)

0x05 CL1_B[1:0],CL1_A[7:0] even
CL1_B[5:4],CL1_C[7:0] odd

Two Taps 10 bits (Basic)

0x06 CL1_B[3:0],CL1_A[7:0] even
CL1_B[7:4],CL1_C[7:0] odd

Two Taps 12 bits (Basic)

0x0A CL1_A[7:0] pixels 4*n+0
CL1_B[7:0] pixels 4*n+1
CL1_C[7:0] pixels 4*n+2
CL2_A[7:0] pixels 4*n+3

Four Taps 8 bits (Medium)

0x0B CL1_B[1:0],CL1_A[7:0] 4*n+0
CL1_B[5:4],CL1_C[7:0] 4*n+1
CL2_C[1:0],CL2_B[7:0] 4*n+2
CL2_C[4:5],CL2_A[7:0] 4*n+3

Four Taps 10 bits (Medium)

0x0C CL1_B[3:0],CL1_A[7:0] 4*n+0
CL1_B[7:4],CL1_C[7:0] 4*n+1
CL2_C[3:0],CL2_B[7:0] 4*n+2
CL2_C[7:4],CL2_A[7:0] 4*n+3

Four Taps 12 bits (Medium)

0x0D CL1_B[7:0],CL1_A[7:0] 4*n+0
CLA_A[7:0],CL1_C[7:0] 4*n+1
CL2_C[7:0],CL2_B[7:0] 4*n+2
CL3_B[7:0],CL3_A[7:0] 4*n+3

Four Taps 16 bits (Medium)

0x12 CL1_A[7:0] 8*n+0
CL1_B[7:0] 8*n+1
CL1_C[7:0] 8*n+2
CL2_A[7:0] 8*n+3
CL2_B[7:0] 8*n+4
CL2_C[7:0] 8*n+5
CL3_A[7:0] 8*n+6
CL3_B[7:0] 8*n+7

Eight Taps 8 bits (Full)

0x13 (pin assignment below)

Eight Taps 10 bits (Full)

0x14 (pin assignment below)

TEN TAPS 8 BITS

 39

254 NA Use Serial Port
255 NA Use USB

8 Tap 10 bitmode
This mode uses all of the RX/TX bits of the camera link interface so it needs to be described in terms of
the actual RX/TX bits verses the Camera Link Specification which uses virtual Ports A-J. The port bits in
the following table refer to the 8-10bit pixels A-H.

Port Bit Tx bit Port Bit Tx bit Port Bit Tx bit
A0 Tx0 C6 Tx0 F3 Tx0
A1 Tx1 C7 Tx1 F4 Tx1
A2 Tx2 C8 Tx2 F5 Tx2
A3 Tx3 C9 Tx3 F6 Tx3
A4 Tx4 D0 Tx4 F7 Tx4
A5 Tx5 D1 Tx5 F8 Tx5
A6 Tx6 D2 Tx6 F9 Tx6
A7 Tx7 D3 Tx7 G0 Tx7
A8 Tx8 D4 Tx8 G1 Tx8
A9 Tx9 D5 Tx9 G2 Tx9
B0 Tx10 D6 Tx10 G3 Tx10
B1 Tx11 D7 Tx11 G4 Tx11
B2 Tx12 D8 Tx12 G5 Tx12
B3 Tx13 D9 Tx13 G6 Tx13
B4 Tx14 E0 Tx14 G7 Tx14
B5 Tx15 E1 Tx15 G8 Tx15
B6 Tx16 E2 Tx16 G9 Tx16
B7 Tx17 E3 Tx17 H0 Tx17
B8 Tx18 E4 Tx18 H1 Tx18
B9 Tx19 E5 Tx19 H2 Tx19
C0 Tx20 E6 Tx20 H3 Tx20
C1 Tx21 E7 Tx21 H4 Tx21
C2 Tx22 E8 Tx22 H5 Tx22
C3 Tx23 E9 Tx23 H6 Tx23
LVAL Tx24 F0 Tx24 H7 Tx24
FVAL Tx25 F1 Tx25 H8 Tx25
C4 Tx26 F2 Tx26 H9 Tx26
C5 Tx27 LVAL Tx27 LVAL Tx27

10 Tap 8 bit mode
This mode (Basler A501k mode) uses all of the RX/TX bits of the camera link interface so it needs to be
described in terms of the actual RX/TX bits verses the Camera Link Specification which uses virtual Ports
A-J. The port bits in the following table refer to the 10 8bit pixels A-K.

Port Bit Tx bit Port Bit Tx bit Port Bit Tx bit
A0 Tx0 D2 Tx0 G5 Tx0
A1 Tx1 D3 Tx1 G6 Tx1

 40

A2 Tx2 D4 Tx2 G7 Tx2
A3 Tx3 D5 Tx3 H0 Tx3
A4 Tx4 D6 Tx4 H1 Tx4
A5 Tx5 D7 Tx5 H2 Tx5
A6 Tx6 E0 Tx6 H3 Tx6
A7 Tx7 E1 Tx7 H4 Tx7
B0 Tx8 E2 Tx8 H5 Tx8
B1 Tx9 E3 Tx9 H6 Tx9
B2 Tx10 E4 Tx10 H7 Tx10
B3 Tx11 E5 Tx11 J0 Tx11
B4 Tx12 E6 Tx12 J1 Tx12
B5 Tx13 E7 Tx13 J2 Tx13
B6 Tx14 F0 Tx14 J3 Tx14
B7 Tx15 F1 Tx15 J4 Tx15
C0 Tx16 F2 Tx16 J5 Tx16
C1 Tx17 F3 Tx17 J6 Tx17
C2 Tx18 F4 Tx18 J7 Tx18
C3 Tx19 F5 Tx19 K0 Tx19
C4 Tx20 F6 Tx20 K1 Tx20
C5 Tx21 F7 Tx21 K2 Tx21
C6 Tx22 G0 Tx22 K3 Tx22
C7 Tx23 G1 Tx23 K4 Tx23
LVAL Tx24 G2 Tx24 K5 Tx24
FVAL Tx25 G3 Tx25 K6 Tx25
D0 Tx26 G4 Tx26 K7 Tx26
D1 Tx27 LVAL Tx27 LVAL Tx27

15.4.2 Camera Link Clock Frequency setting
This byte controls the Camera link output clock rate.

FC13 Camera Link Clock
Frequency

 FC40 Camera Link Clock
Frequency

0x00 33MHz 0x00 30MHz
0x01 42.5MHz 0x01 42.5MHz
0x02 66MHz 0x02 60MHz
0x03 85MHz 0x03 85MHz

15.4.3 Binning Control setting
This byte controls which 16 bits are selected from the 18 bit binned pixel value.

Binning Control byte
Bits [3:0] Horizontal binning setting with

rates selectable in the range
of 1 to 14.

Bits [7:0] Vertical binning setting with
rates selectable in the range
of 1 to 12.

 41

15.4.4 Binning Multiplier setting
This byte controls which 16 bits are selected from the 18 bit binned pixel value.

Binning Multiplier byte
0x00 Bits [15:0] selected from the 18

bit binned pixel value.
0x01 Bits [17:2] selected from the 18

bit binned pixel value.

The actual Frame rate of the camera is determined by settings within the ControlFpga and the DataFpga.

The ControlFpga settings determine the data rate from the sensor by adjusting the ROI (Region of
Interest), exposure rate and exposure delay. The DataFpga settings determine the binning settings (which
can increase frame rate as there is less data to send over the Camera Link Interface), the Camera link
mode and clock speed. To get the fastest frame rate possible for a given ROI you can calculate the
minimum required Line Period (in pixels clocks) by the following formula.

Min. Line Period =
((Time_required_over_Camera_Link – Time_to_gather_data_from_sensor) / 1/66Mhz) – 132 (clocks per

line)

The time required to send each row of data over the Camera Link is calculated by:
Time_required_over_Camera_Link =

(Num_Data_pixels_per_row / Num_Taps) * 1/Selected_Clock_rate

The time required to gather each row of data from the sensor is calculated by:
Time_to_gather_data_from_sensor = 132 (clocks per row min) * 1/66Mhz = 2us

Num_Data_pixels_per_row =

(((# of cols in ROI * 10pixels/column) / Horiz_binning) / Vertical_binning)

So for example, when running full resolution (1280 pixels per row), no binning, in 1Tap mode at 33Mhz
clock rate the calculation is:
Time_required_over_Camera_Link – 2us / 1/66Mhz) – 132 (clocks per line)

38.7us – 2us / 1/66Mhz = 2422 – 132 = 2290
Thus the Minimum line period needs to be set to 2290, which adds that many clocks per line read from the
sensor, which results in a frame rate of 1/(1024 rows * 38.7us per row) or about 25 full resolution frames
per second.

If we up the clock rate over the Camera Link to 85Mhz and switch to 8Tap mode then the limiting factor
becomes the time to gather the data from the sensor:

Time_required_over_Camera_Link = 1280/8 * 1/85Mhz = 1.88uS

The time duration of 1.88uS to output the line is less than the time required to gather the sensor data of
2uS so we do not need to extend the line length and the Minimum Line period can be set to 0.

15.5 Frame Rates

 42

The FC40 DataFpga connects to the DdrFpga via a high speed SERDES link. This link is 13 bits wide and
is able to transmit 104 bits of data to the DdrFpga at the sensor clock speed (66Mhz). This data path

consists of 100 bits of data (10, 10bit pixels), 2 bits of control (Lval, Fval), and 2 spare bits.

The following diagrams show simplified state diagrams used to design the Camera Link output stage of
the DataFpga.

The data from the fifos are fed to 5-to-1 muxes on order to limit the fanout of the data from the FIFO.
There are 8 muxs in order to support 8 Tap mode. Muxs 1,3,5,7 multiplex between pixels 1,3,5,7,9 and
Muxs 2,4,6,8 multiplex between pixels 2,4,6,8,T. There are 4 mux select buses which control Muxs 1-2, 3-
4, 5-6, 7-8.

The ordering of the pixels output each clock vary per the number of taps:
of Taps Order of the pixels

output at each clock
cycle

Pixels read during the current clock cycle to be
available for on subsequent clock cycles

1 Tap
1
2
3
4
5
6
7
8
9
T

1 2 3 4 5 6 7 8 9 T (whole FIFO preread)

1 2 3 4 5 6 7 8

 9 T

2 Taps
1 2
3 4
5 6
7 8
9 T

1 2 3 4 5 6 7 8 9 T (whole FIFO preread)

1 2 3 4 5 6 7 8
 9 T

4 Taps
1234
5678
9T12
3456
789T

1 2 3 4 5 6 7 8 9 T (whole FIFO preread)

1 2 3 4 5 6 7 8
 9 T
1 2 3 4 5 6
 7 8 9 T

8 Taps
1 2 3 4 5 6 7 8
9 T 1 2 3 4 5 6
7 8 9 T 1 2 3 4
5 6 7 8 9 T 1 2

1 2 3 4 5 6 7 8 9 T (whole FIFO preread)
1 2 3 4 5 6
1 2 3 4 7 8 9 T
1 2 5 6 7 8 9 T
 3 4 5 6 7 8 9 T

15.6 Memory Operation.

15.7 Technical Details.

 43

3 4 5 6 7 8 9 T 1 2 3 4 5 6 7 8 9 T
10 Taps

1 2 3 4 5 6 7 8 9 T
1 2 3 4 5 6 7 8 9 T (whole FIFO preread)
1 2 3 4 5 6 7 8 9 T

The following notes apply for these timing diagrams

• CLK0 is the camera link output clock
• Empty is the signal from the FIFO that starts the state machine operation in these simplified state

diagrams. The actual verilog code used a combination of Empty and other conditions to insure
that the FIFO did not under-run.

• State[7:0] signal uses mnemonics to indicate the state machine states. The state machine starts
in Idle, changes to RD_1st (first fifo read) and then loops reading the FIFO and outputting data
until the Lval signal from the FIFO deasserts.

• The FIFO was split into 5 sperate FIFO’s each with their own read control signals. The five FIFOs
contain pixels 1-2, 3-4, 5-6, 7-8, 9-10. The data from the FIFOs was shown here as a byte per
pixel, so signal fifo_d12[15:0] represents pixel2 on bits [15:8] and pixel1 on bits [7:0]

• Signal FF_RDxx are the FIFO read signals.
• Signal ff_lval is the Lval status out of the FIFO.
• Signals fifo_dxx[15:0] are the pixels from the FIFO.
• Mux1_sel[2:0] controls the mux selects for muxs 1,2. Mux2_sel controls muxs 3,4,etc. Thus a mux

select index of 0x0 for muxs1,2 selects the first pixel from the two muxs which are pixels 1 and 2.
• Signals MuxX_d show the pixels selected from the mux

15.8 1 Tap mode

When the FIFO deasserts empty the state machine starts with a pre-read of the whole FIFO during which
pixels 1-Ten are read. The state machine then continues in a 10 cycle loop until the end of the line is
detected (ff_lval deasserted). The outputs from muxs 1,2 are multiplexed again onto the single output tap
(data_pipe1)

 44

15.9 2 Tap mode

When the FIFO deasserts empty the state machine starts with a pre-read of the whole FIFO during which
pixels 1-Ten are read. The state machine then continues in a 5 cycle loop until the end of the line is
detected (ff_lval deasserted). The output from muxs 1,2 drive the two taps.

15.10 4 Tap mode

When the FIFO deasserts empty the state machine starts with a pre-read of the whole FIFO during which
pixels 1-Ten are read. The state machine then continues in a 5 cycle loop until the end of the line is
detected (ff_lval deasserted). The output from muxs 1,2,3,4 drive the four taps.

 45

15.11 8 Tap mode

When the FIFO deasserts empty the state machine starts with a pre-read of the whole FIFO during which
pixels 1-Ten are read. The state machine then continues in a 5 cycle loop until the end of the line is
detected (ff_lval deasserted). The output from muxs 1,2,3,4,5,6,7,8 drive the eight taps.

 46

15.12 Sensor Interface
The FPGA interface to the sensor consists of the following signals:

1. mv_hsck4,2,1,0
2. mv_hsck0,
3. mv_hsck1,
4. mv_hsck2,
5. mv_hsck4,
6. mv_sel0,
7. mv_sel1,
8. mv_sel2,
9. mv_sel4,
10. mv_hsd,
11. mv_data

16 USB CAMERA OPTION

All cameras are shipped with a USB interface for control and readout of the camera. This allows the
camera to be operated with or without a framegrabber, and helps diagnose system problems when a

 47

framegrabber is being used. A camera control program comes with the camera, which uses the serial
port supported by the framegrabber, if it supports the standard Camera Link DLL, or may be used with the
USB port in situations where the camera link serial port is not available, or too slow. In order to use this
option you must be using an operating system that supports USB, and have the correct drivers installed.
Currently this is supported under Windows and Linux only.
The USB port may also be used to obtain image data from the camera, you may select full images or an
ROI to reduce the image rate. The camera supports USB 2.0, which provides up to about 40 MBytes/sec
transfer rates. You will probably get less, it depends on your computer; typically the transfer rate is more
than 30 Mbytes/sec.

17 CAMERA CONTROL PROGRAM

The Camera Control Program provides a GUI interface that allows you to send and receive control data
and images from the camera. See read me files under camera control program software.

18 APPLICATION ENVIRONMENTS

In this section we will discuss several operating environments to give you an idea of what you need to
operate the camera with a PC.

18.1 USB operation
In this mode of operation needs the following items:
� The camera and a lens
� A power supply for the camera.
� A USB cable
� FastVision supplied USB software for your OS.

All of the above can be supplied to you by FastVision. The software (item #4) provides two forms of
access to the camera, via a library (DLL, or ActiveX control under Windows, linkable library under other
operating systems), and via the supplied application called FastViewer.

18.1.1 The hardware connections are:

Camera

Power
Supply

Le
ns

Computer
USB
Cable

 48

18.1.2 The software connections are:

USB
Device

In
Camera

Your
Software

Library,
DLL
Or

ActiveX
Control

Operating
System

Provided
USB

Drivers

FastVision
Provided

USB
Device
Driver

FastVision
FastViewer
Software

Library,
DLL
Or

ActiveX
Control

18.2 Using a FastVision supplied framegrabber
In this mode of operation you will need the following items:

� The camera and a lens
� A power supply for the camera.
� One or more camera link cables.
� FastVision supplied framegrabber
� FastVision supplied framegrabber software.
� All of this can be supplied by FastVision.

18.2.1 The hardware connections are:

CameraLe
ns

Your Computer

Power
Supply

FastVision
Provided

Frame Grabber1 or 2
Camera Link
Cables

18.2.2 The software connections are:

 49

Camera
Serial
And

Channel
Link

Devices

Driver
For

FastVision
Frame

Grabber

DLL, Library
or

ActiveX Control
For

FastVision
Frame Grabber

Your
Software

Camera
Control

Program

FastVision Application
Program Like FastViewer

18.3 Using a third-party framegrabber
In this mode of operation you will need the following items:

� The camera and a lens
� A power supply for the camera.
� One or more Camera Link cables for the camera.
� Third-party framegrabber
� AIA compliant software provided by FG supplier
� FastVision supplied camera control program

18.3.1 The hardware connections are:

CameraLe
ns

Your Computer

Power
Supply

Third Party
Provided

Frame Grabber1 or 2
Camera Link
Cables

 50

18.3.2 The software connections are:

Camera
Serial
And

Channel
Link

Devices

Driver
for

Your Frame
Grabber

DLL or Library
For Your

Frame Grabber

Your
Software

Camera Link
Standard DLL

FastVision
Camera Control

Application

This will only work if your framegrabber supports the Camera Link standard serial interface
protocol, and your framegrabber vendor has provided the needed DLL. Otherwise you will
have to send commands to the camera in the way specified by your framegrabber vendor.

 51

19 TROUBLESHOOTING

There are several things you can try before you call FastVision Technical Support for help.
_____ Make sure the computer is plugged in. Make sure the power source is on.

_____ Go back over the hardware installation to make sure that the system is properly installed.

_____ Go back over the software installation to make sure you have installed all necessary software.

_____ Run the Installation User Test to verify correct installation of both hardware and software.

_____ Run the user-diagnostics test for your main board to make sure it’s working properly.

_____ Insert the FastVision CD-ROM and check the various Release Notes to see if there is any
information relevant to the problem you are experiencing.

The release notes are available in the directory: \usr\fastvision\alinfo

20 FASTVISION TECHNICAL SUPPORT

FastVision offers technical support to any licensed user during the normal business hours of 9 a.m. to
5 p.m. EST. We offer assistance on all aspects of processor board and PMC installation and
operation.

21 CONTACTING TECHNICAL SUPPORT

To speak with a Technical Support Representative on the telephone, call the number below and ask
for Technical Support:

Telephone: 603-891-4317

If you would rather FAX a written description of the problem, make sure you address the FAX to
Technical Support and send it to:

Fax: 603-891-1881

You can email a description of the problem to support@fast-vision.com

 52

21.1 Returning Products for Repair or Replacements

Our first concern is that you be pleased with your FastVision products.

If, after trying everything you can do yourself, and after contacting FastVision Technical Support,
you feel your hardware or software is not functioning properly, you can return the product to
FastVision for service or replacement. Service or replacement may be covered by your warranty,
depending upon your warranty. The first step is to call FastVision and request a “Return Materials
Authorization” (RMA) number. This is the number assigned both to your returning product and to
all records of your communications with Technical Support. When an FastVision technician
receives your returned hardware or software he will match its RMA number to the on-file
information you have given us, so he can solve the problem you’ve cited.

When calling for an RMA number, please have the following information ready:
_____ Serial numbers and descriptions of product(s) being shipped back

_____ A listing including revision numbers for all software, libraries, applications, daughter
cards, etc.

_____ A clear and detailed description of the problem and when it occurs

_____ Exact code that will cause the failure

_____ A description of any environmental condition that can cause the problem

All of this information will be logged into the RMA report so it’s there for the technician when your
product arrives at FastVision. Put boards inside their anti-static protective bags. Then pack the
product(s) securely in the original shipping materials, if possible, and ship to:

FastVision, LLC.

71 Spitbrook Rd Suite 200
Nashua, NH 03060

USA

Clearly mark the outside of your package:
Attention RMA 90XXX

Remember to include your return address and the name and number of the person who should be
contacted if we have questions.

 53

21.2 Reporting Bugs

We at FastVision are continually improving our products to ensure the success of your projects. In
addition to ongoing improvements, every FastVision product is put through extensive and varied
testing. Even so, occasionally situations can come up in the fields that were not encountered during
our testing at FastVision.

If you encounter a software or hardware problem or anomaly, please contact us immediately for
assistance. If a fix is not available right away, often we can devise a work-around that allows you to
move forward with your project while we continue to work on the problem you’ve encountered.

It is important that we are able to reproduce your error in an isolated test case. You can help if you
create a stand-alone code module that is isolated from your application and yet clearly demonstrates
the anomaly or flaw.

Describe the error that occurs with the particular code module and email the file to us at:

support@fast-vision.com

We will compile and run the module to track down the anomaly you’ve found.

If you do not have Internet access, or if it is inconvenient for you to get to access, copy the code to a
disk, describe the error, and mail the disk to Technical Support at the FastVision address below.

If the code is small enough, you can also:

FAX the code module to us at 603-891-1881

If you are faxing the code, write everything large and legibly and remember to include your description
of the error.

When you are describing a software problem, include revision numbers of all associated software.

For documentation errors, photocopy the passages in question, mark on the page the number and
title of the manual, and either FAX or mail the photocopy to FastVision.

Remember to include the name and telephone number of the person we should contact if we have
questions.

FastVision LLC.
131 Daniel Webster Highway #529

Nashua, NH 03060
USA

Telephone: 603-891-4317

FAX: 603-891-1881

Web site:
http://www.fast-vision.com/

Electronic Mail:

sales@fast-vision.com
support@fast-vision.com

